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Operator Solution

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

Mermin 1990 and Peres 1990



Max-Cut

Noncommutative Max-Cut
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Noncommutative Max-Cut

∑
1 − tr(XiXj)

2
s.t. Xi is unitary with  eigenvalues±1

max

• The Hilbert space is finite-dimensional


• But no bound on the dimension


•  is the dimension-normalized trace


•  is always between  and 

tr

tr(XY ) −1 1



tr(XY) = ⟨ψ | (XY ⊗ I) |ψ⟩

Where  is a maximally entangled state on 
a larger system

|ψ⟩



Probabilistic Cut: an assignment of binary random variables
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Pr1(−1) = 0.2
Pr1(+1) = 0.8

Pr2(−1) = 0.5
Pr2(+1) = 0.5

1 2

Probabilistic Cut: an assignment of binary random variables
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Pr1(−1) = 0.2
Pr1(+1) = 0.8

Pr2(−1) = 0.5
Pr2(+1) = 0.5

1 2
This then induces a probability 

distribution over cuts

A probabilistic cut: An ensemble 
of cuts
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Probabilistic Cut: an assignment of binary random variables
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Noncommutative Cut: an assignment of binary observables

Probabilistic Cut: an assignment of binary random variables
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Pr12(+1, + 1) = 0.1
Pr12(+1, − 1) = 0.2
Pr12(−1, + 1) = 0.3
Pr12(−1, − 1) = 0.4

Noncommutative Cut: an assignment of binary observables

Probabilistic Cut: an assignment of binary random variables
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Probabilistic Cut

Noncommutative Cut

Pr12(+1, + 1) = 0.1
Pr12(+1, − 1) = 0.2
Pr12(−1, + 1) = 0.3
Pr12(−1, − 1) = 0.4
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Pr1(−1) = 0.2
Pr1(+1) = 0.8

Pr2(−1) = 0.5
Pr2(+1) = 0.5
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Noncommutative Cut

Pr12(+1, + 1) = tr(
I + X1

2
I + X2

2
)

X1 X2

Pr12(+1, − 1) = tr(
I + X1

2
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2
)

Pr12(−1, + 1) = tr(
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2
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2
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Pr12(−1, − 1) = tr(
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2
I − X2

2
)



Operational Interpretation of Noncommutative Cuts
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Quantum Correlations

i

a

j

b

Pi,j(a, b)

Quantum 
Correlations



Classical Correlations
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Edge Probabilities
Pi,j(a, b)

Quantum 
Correlations

i j

= Noncommutative 
Cuts

Classical 
Correlations = Probabilistic   
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MaxCut Instance
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The 2022 Nobel Prize in Physics awarded to Alain 
Aspect, John F. Clauser, and Anton Zeilinger

Quantum 
Correlations

Classical 
Correlations



Computational Aspects

• Slofstra 2016: Membership problem for "Quantum Correlations" is undecidable


• In particular optimization over the set is uncomputable


• Ji, Natarajan, Vidick, Wright, Yuen 2020: Approximation is also beyond reach


• Tsirelson 1980: Noncommutative MaxCut is in P


• Karp 1972: Classical MaxCut is NP-Complete



Computational Aspects

• Slofstra 2016: Membership problem for "Quantum Correlations" is undecidable


• In particular optimization over the set is uncomputable


• Ji, Natarajan, Vidick, Wright, Yuen 2020: Approximation is also beyond reach


• Tsirelson 1980: Noncommutative MaxCut is in P


• Karp 1972: Classical MaxCut is NP-Complete


• Classical theory: General CSPs are NP-hard to approximate, but what about 
special cases like MaxCut or Max3SAT?



Approximability of Noncommutative CSPs

Algorithm: Frieze and Jerrum 
Goemans and Williamson 

de Klerk, Pasechnik, and Warners 

Hardness: Khot, Kindler, Mossel, O'Donnell 



Concepts: Anticommuting Algebras and Relative Distributions

• Hyperplane rounding of Goemans-Williamson 


• A random operator 


• 's generate generalized Weyl-Brauer algebra

⃗r = (r1, …, rn)

R = r1σ1 + ⋯ + rnσn

σi



Concepts: Anticommuting Algebras and Relative Distributions

• Given a , sample unitaries  uniformly such that 


• Sample eigenvalues  from 


• What is the angle between ?


• It is the well-known Cauchy distribution

λ U, V < U, V > = λ

α, β U, V

α, β


