Approximation Algorithms for Noncommutative Constraint Satisfaction Problems

Maximize $\langle \phi | A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 | \phi \rangle$

Max-Cut

Hamoon Mousavi (Simons at UC Berkeley)

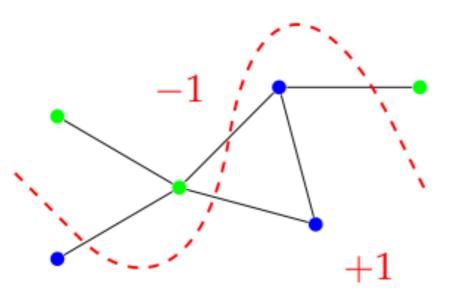
Eric Culf (University of Waterloo), Taro Spirig (University of Copenhagen)

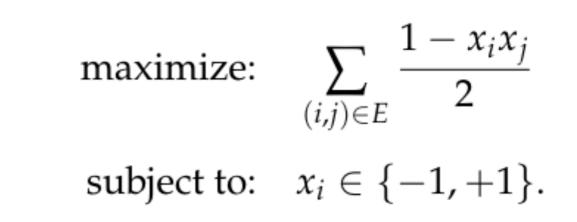
Magic Square

Operator Solution

Mermin 1990 and Peres 1990

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$7 \otimes I$	$I \otimes 7$	$Z \otimes Z$	⊥ <i>1</i>
	$I \bigotimes L$		ŢΙ
$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I
0			
+I	+I	-I	

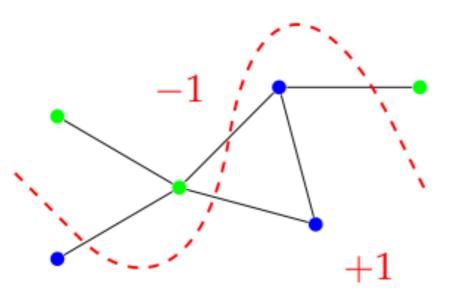


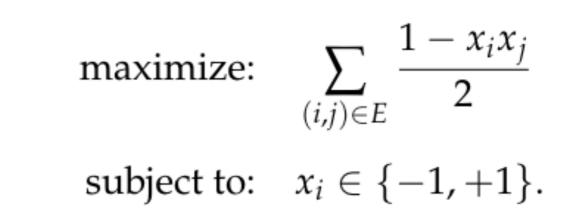


Noncommutative Max-Cut

$$\max \sum \frac{1 - X_i X_j}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues





Noncommutative Max-Cut

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

Noncommutative Max-Cut

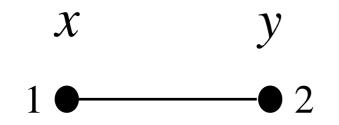
$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

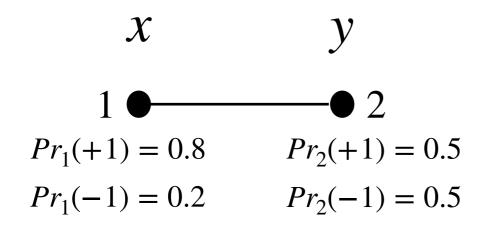
s.t. X_i is unitary with ± 1 eigenvalues

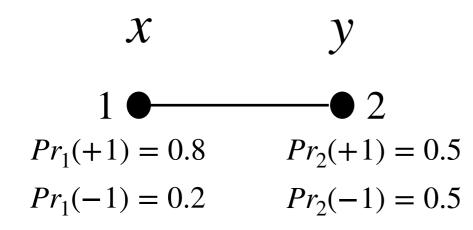
- The Hilbert space is finite-dimensional
- But no bound on the dimension
- *tr* is the dimension-normalized trace
- tr(XY) is always between -1 and 1

$tr(XY) = \langle \psi | (XY \otimes I) | \psi \rangle$

Where $|\psi\rangle$ is a maximally entangled state on a larger system

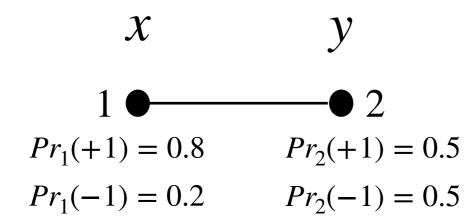




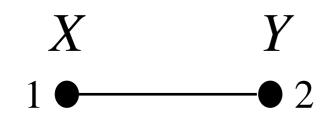


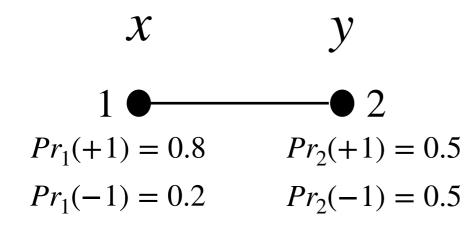
This then induces a probability distribution over cuts

A probabilistic cut: An ensemble of cuts

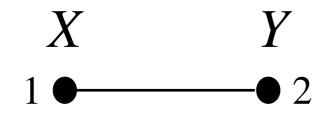


Noncommutative Cut: an assignment of binary observables



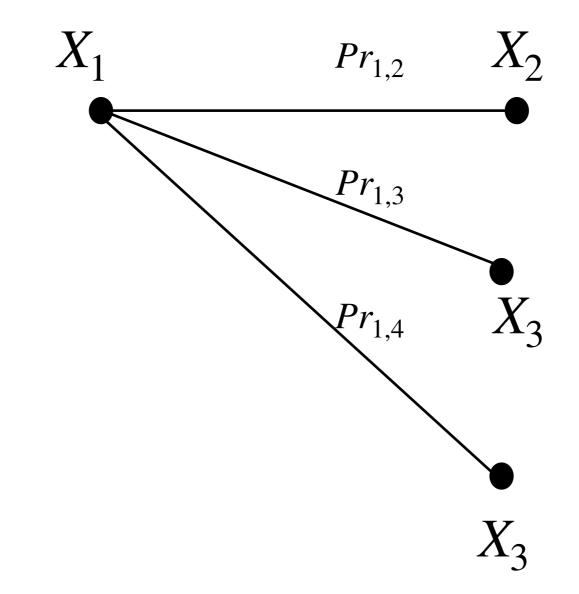


Noncommutative Cut: an assignment of binary observables

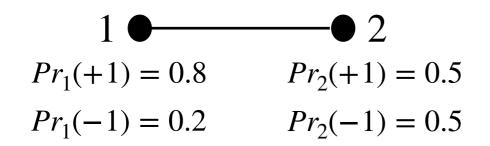


$$Pr_{12}(+1, +1) = 0.1$$
$$Pr_{12}(+1, -1) = 0.2$$
$$Pr_{12}(-1, +1) = 0.3$$
$$Pr_{12}(-1, -1) = 0.4$$

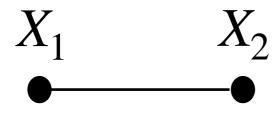
Inconsistencies of Edge Probabilities



Probabilistic Cut

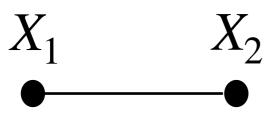


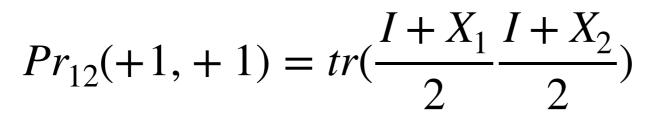
Noncommutative Cut



 $Pr_{12}(+1, +1) = 0.1$ $Pr_{12}(+1, -1) = 0.2$ $Pr_{12}(-1, +1) = 0.3$ $Pr_{12}(-1, -1) = 0.4$

Noncommutative Cut



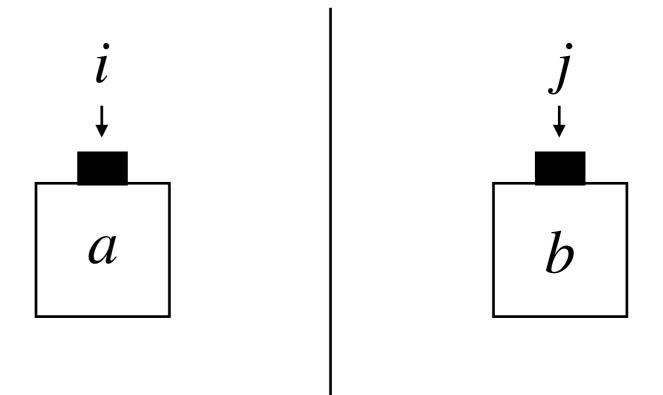


$$Pr_{12}(+1, -1) = tr(\frac{I + X_1}{2} \frac{I - X_2}{2})$$

$$Pr_{12}(-1, +1) = tr(\frac{I - X_1}{2}\frac{I + X_2}{2})$$

$$Pr_{12}(-1, -1) = tr(\frac{I - X_1}{2} \frac{I - X_2}{2})$$

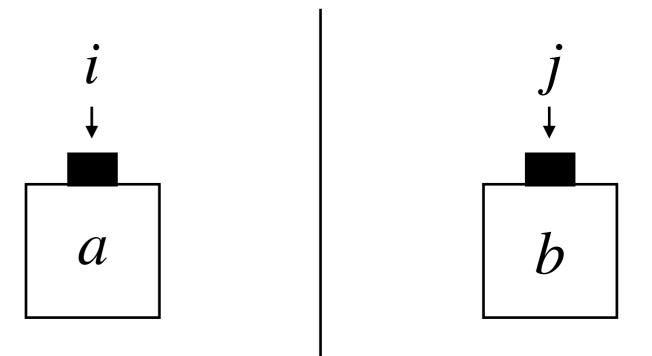
Operational Interpretation of Noncommutative Cuts



 $i, j \in V$,

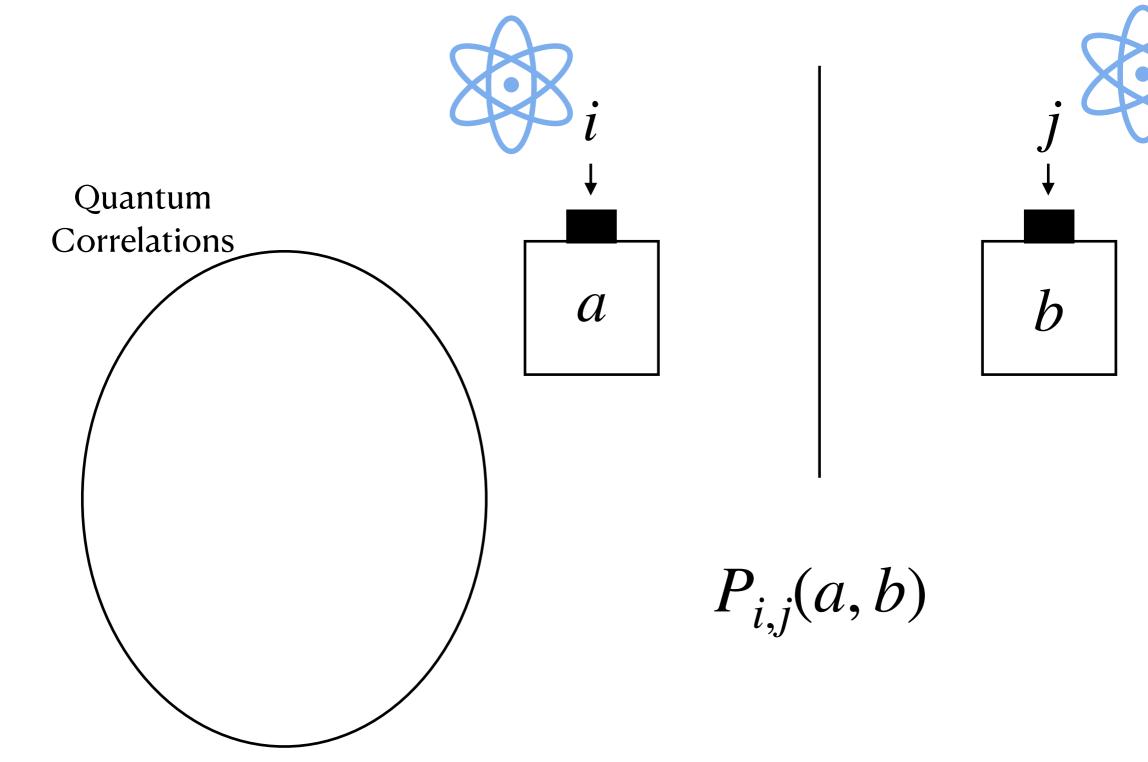
 $a, b \in \{+1, -1\}$

Correlations



 $P_{i,j}(a,b)$

Quantum Correlations



Classical Correlations

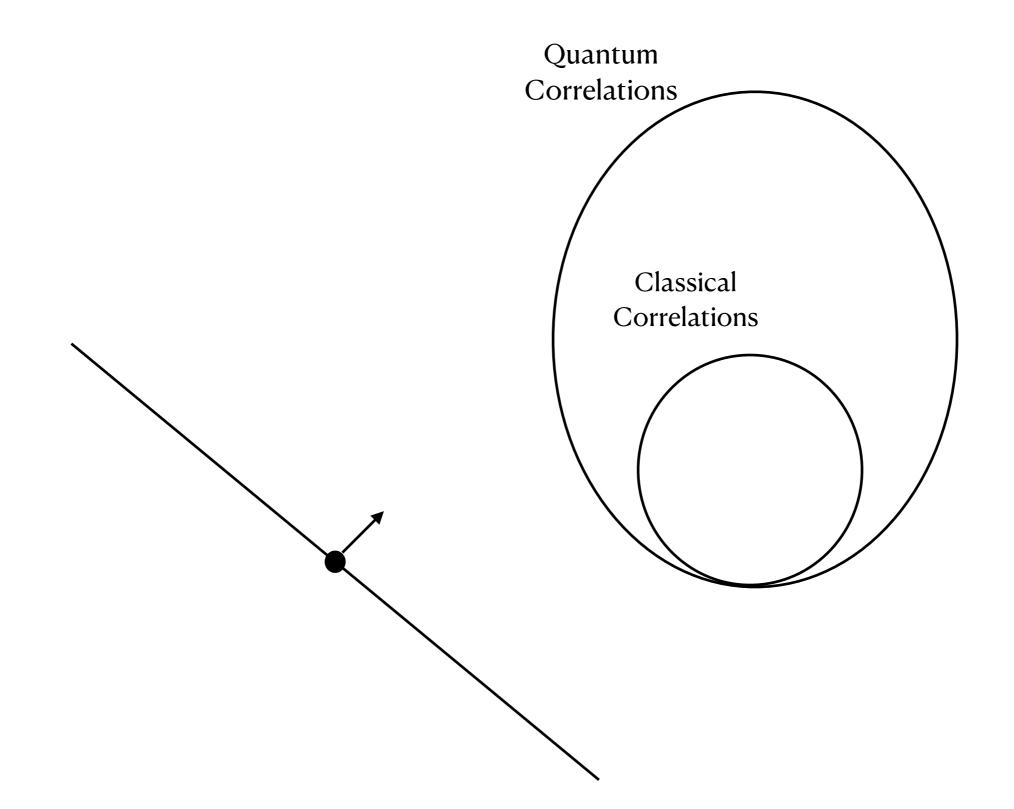


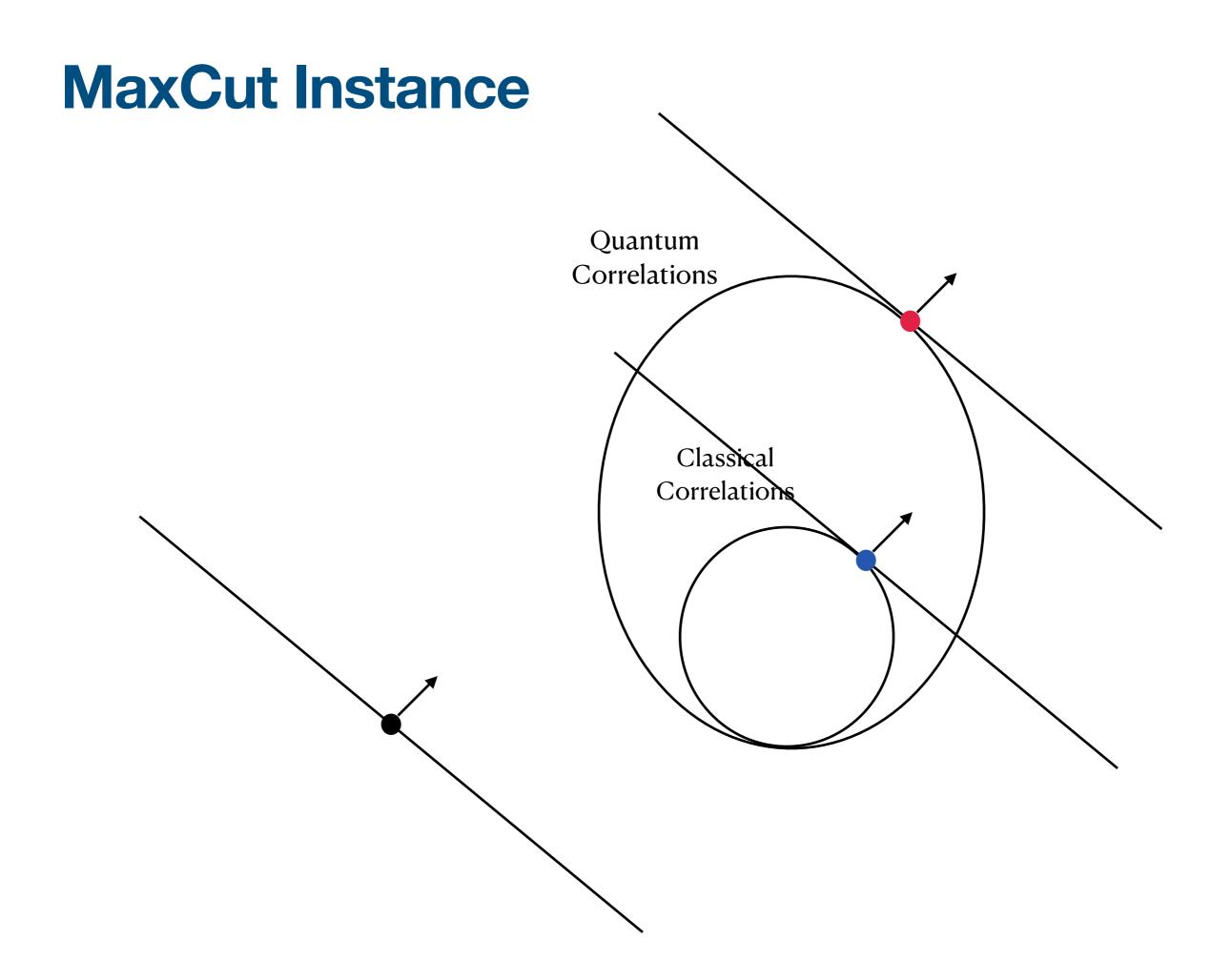
Edge Probabilities

$$i \quad P_{i,j}(a,b) \quad j$$

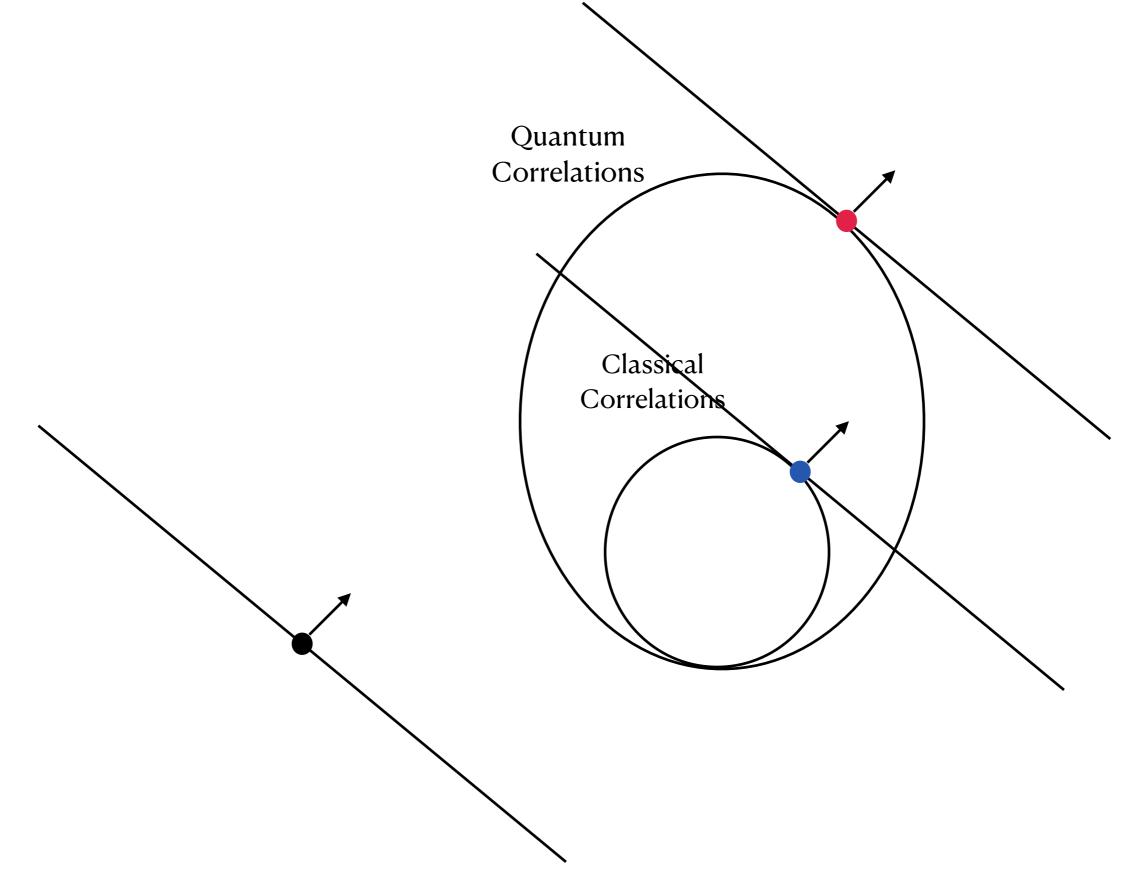
Quantum Moncommutative Correlations

MaxCut Instance





The 2022 Nobel Prize in Physics awarded to Alain Aspect, John F. Clauser, and Anton Zeilinger



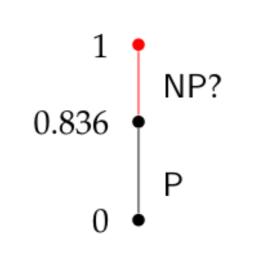
Computational Aspects

- Slofstra 2016: Membership problem for "Quantum Correlations" is undecidable
- In particular optimization over the set is uncomputable
- Ji, Natarajan, Vidick, Wright, Yuen 2020: Approximation is also beyond reach
- Tsirelson 1980: Noncommutative MaxCut is in P
- Karp 1972: Classical MaxCut is NP-Complete

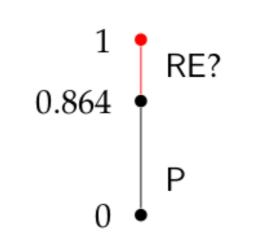
Computational Aspects

- Slofstra 2016: Membership problem for "Quantum Correlations" is undecidable
- In particular optimization over the set is uncomputable
- Ji, Natarajan, Vidick, Wright, Yuen 2020: Approximation is also beyond reach
- Tsirelson 1980: Noncommutative MaxCut is in P
- Karp 1972: Classical MaxCut is NP-Complete
- Classical theory: General CSPs are NP-hard to approximate, but what about special cases like MaxCut or Max3SAT?

Approximability of Noncommutative CSPs



(a) Max-3-Cut



(b) Noncommutative Max-3-Cut

Algorithm: Frieze and Jerrum Goemans and Williamson de Klerk, Pasechnik, and Warners

Hardness: Khot, Kindler, Mossel, O'Donnell

Concepts: Anticommuting Algebras and Relative Distributions

- Hyperplane rounding of Goemans-Williamson $\vec{r} = (r_1, ..., r_n)$
- A random operator $R = r_1 \sigma_1 + \dots + r_n \sigma_n$
- σ_i 's generate generalized Weyl-Brauer algebra

Concepts: Anticommuting Algebras and Relative Distributions

- Given a λ , sample unitaries U, V uniformly such that $\langle U, V \rangle = \lambda$
- Sample eigenvalues α, β from U, V
- What is the angle between α, β ?
- It is the well-known Cauchy distribution