Algebras, CSPs, and Quantum Computation

Maximize $\langle \phi | A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 | \phi \rangle$

Max-Cut

Hamoon Mousavi (Simons Institute at UC Berkeley)

Algebras, CSPs, and Quantum Computation Plan

- Noncommutative constraint satisfaction problems (NC-CSPs)
 - Classical theory
 - Noncommutative extension
- New directions?
 - Quantum computation

Algebras, CSPs, and Quantum Computation

NC-CSP Terminology

- Quantum nonlocal games
- Bell inequalities
- Entangled multiprover interactive proofs (MIP*)
- Noncommutative polynomial optimization

- 3SAT instance is a boolean formula
- NC-3SAT should evoke a similar picture but for the quantum setting

NC-CSPs

Magic Square

Perfect Operator Solution

Mermin 1990 and Peres 1990

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
$Z \otimes X$	$X \otimes Z$	$Y \bigotimes Y$	+I
+I	+I	-I	

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	+1	
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	+1	\longrightarrow
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	+1	

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I

+1 +1 -1

+I +I -I

 $x_{ij} \in \{+1, -1\}$

			7					_
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	+1		$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	+1	\longrightarrow	$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	+1		$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I
+1	+1	-1]		+I	+I	- <i>I</i>	I
$x_{ij} \in \{+1, -1\}$								

Binary alphabet $\{+1, -1\}$ in the classical case \longrightarrow Binary observables

			-					
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	+1		$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	+1	\longrightarrow	$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	+1		$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I
+1	+1	-1	_		+I	+I	-I	
X_{ij}	$\in \{+1, -$	1}						

Binary alphabet $\{+1, -1\}$ in the classical case \longrightarrow Binary observables

Binary observables: Unitary operators with $\{+1, -1\}$ eigenvalues $O^*O = O^2 = I$

An operator CSP

$$X_{ij}^* X_{ij} = I$$

$$X_{ij}^* X_{ij} = I$$

$$X_{21}^2 = I$$

$$X_{31}^2 = I$$

$$X_{31} = I$$

$$X_{32} = I$$

$$X_{33} = I$$

$$X_{31} = I$$

An operator CSP

When restricting to one dimension we recover the classical CSP

Because ± 1 are the only binary observables is one dimension

An operator CSP but not yet an NC-CSP

NC-Max-Cut?

$$\max \sum \frac{I - X_i X_j}{2}$$

s.t. X_i are binary observables

maximize:
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$
subject to: $x_i \in \{-1,+1\}.$

NC-Max-Cut?

$$\max \langle \phi | \left(\sum \frac{I - X_i X_j}{2} \right) | \phi \rangle$$

s.t. X_i are binary observables and $|\phi\rangle$ is a state

maximize:
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$
subject to: $x_i \in \{-1,+1\}.$

NC-Max-Cut

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

- The Hilbert space is finite-dimensional
- But no bound on the dimension
- *tr* is the dimension-normalized trace
- tr(XY) is always between -1 and 1

There is a state underlying the trace formulation

$tr(XY) = \langle \psi | (XY \otimes I) | \psi \rangle$

Where $|\psi\rangle$ is a maximally entangled state on a larger system

But what does a noncommutative cut look like?

This then induces a probability distribution over cuts

A probabilistic cut: An ensemble of cuts

Noncommutative Cut: an assignment of binary observables

Noncommutative Cut: an assignment of binary observables

$$Pr_{12}(+1, +1) = 0.1$$
$$Pr_{12}(+1, -1) = 0.2$$
$$Pr_{12}(-1, +1) = 0.3$$
$$Pr_{12}(-1, -1) = 0.4$$

A probabilistic assignment induces a distribution on cuts

An observable assignment doesn't

Inconsistencies of Edge Probabilities

Warning: X and Y must commute for them to be simultaneously measurable

 $Pr_{12}(+1, +1) = 0.1$ $Pr_{12}(+1, -1) = 0.2$ $Pr_{12}(-1, +1) = 0.3$ $Pr_{12}(-1, -1) = 0.4$

Warning: *X* and *Y* must commute for them to be simultaneously measurable

- Two formulations of noncommutative MaxCut:
 - If there is an edge the observables must commute: Quantum correlations: Q-MaxCut
 - Do not impose any commutation: The synchronous model of quantum correlations: NC-MaxCut

Operational Interpretation of Noncommutative Cuts

 $i, j \in V$,

 $a, b \in \{+1, -1\}$

Correlations

 $P_{i,j}(a,b)$

Quantum Correlations

Classical Correlations

Where is MaxCut in this picture?

Where is MaxCut in this picture?

Computational Aspects

Computational Aspects

- Slofstra 2016: Membership problem for "Quantum Correlations" is undecidable
- In particular optimization over the set is uncomputable
- Ji, Natarajan, Vidick, Wright, Yuen 2020 (MIP*=RE): Even approximation is beyond reach

• So generic NC-CSPs are very complex

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

• Karp 1972: MaxCut is NP-Complete

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

- Karp 1972: MaxCut is NP-Complete
- Tsirelson 1980: NC-MaxCut is in P

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

- Karp 1972: MaxCut is NP-Complete
- Tsirelson 1980: NC-MaxCut is in P
- The best classical algorithm is SDP rounding by Goemans and Williamson
- Tsirelson's algorithm is an operator generalization

What about other NC-CSPs?

Frieze and Jerrum

Culf, M., Spirig

Proofidea:

A strong property of noncommutative matrix algebras (rigidity or self-testing)

The power of noncommutative algebras in characterizing optimal solutions

<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	+I
<i>X</i> ₂₁	<i>X</i> ₂₂	<i>X</i> ₂₃	+I
<i>X</i> ₃₁	<i>X</i> ₃₂	<i>X</i> ₃₃	+I
+I	+I	-I	

The power of noncommutative algebras in characterizing optimal solutions

<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	+I
<i>X</i> ₂₁	<i>X</i> ₂₂	<i>X</i> ₂₃	+I
<i>X</i> ₃₁	<i>X</i> ₃₂	<i>X</i> ₃₃	+I
+I	+I	-I	

Rigidity: In every optimal solution X_{12} and X_{21} must anticommute

This is why in MaxCut and Max3Cut we do better in the NC setting

Hardness front

• PCP theorem: Approximating Label-Cover is NP-hard (Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)

 NC-PCP theorem (MIP*=RE): Approximating NC-Label-Cover is RE-hard (Ji, Natarajan, Vidick, Wright, Yuen 2020)

Hardness front

• PCP theorem: Approximating Label-Cover is NP-hard (Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)

 NC-PCP theorem (MIP*=RE): Approximating NC-Label-Cover is RE-hard (Ji, Natarajan, Vidick, Wright, Yuen 2020)

• Compare this with the situation for the Local Hamiltonian problem (LH):

Quantum PCP conjecture: Approximating Local Hamiltonian is QMA-hard

Hardness front

• Similarly UGC has an NC-UGC analogue

• Assuming UGC, approximating MaxCut to better than 0.878 is NP-hard (Khot, Kindler, Mossel, O'Donnell)

 Assuming Q-UGC, approximating Q-MaxCut to better than 0.878 is RE-hard (M., Spirig)

A classical theorem involving NP and CSP

becomes

A theorem that involves RE and NC-CSP

What is the difference between

Local Hamiltonians

and

CSPs or NC-CSPs?

The most general notion of a CSP

- The notion of locale, site, or variable
 - boolean ±1 in MaxCut
 - binary observable in NC-MaxCut
 - qubit in Local Hamiltonians

The most general notion of a CSP

- The notion of locale, site, or variable
 - boolean ±1 in MaxCut
 - binary observable in NC-MaxCut
 - qubit in Local Hamiltonians
- Constraints
 - operations on variables
 - MaxCut: addition and multiplication (commutative)
 - NC-MaxCut: addition and multiplication (noncommutative)

The most general notion of a CSP

- The notion of locale, site, or variable
 - boolean ±1 in MaxCut
 - binary observable in NC-MaxCut
 - qubit in Local Hamiltonians
- Constraints
 - operations on variables
 - MaxCut: addition and multiplication (commutative)
 - NC-MaxCut: addition and multiplication (noncommutative)
 - interactions between sites
 - Local Hamiltonians: the Hamiltonian

CSPs: commutative algebras

NC-CSPs: matrix algebras

Local Hamiltonians: not algebraic

The algebraic nature of CS tools (sumcheck protocol, low-degree testing, Fourier analysis on the hypercube)

fits

the algebraic nature of CSPs and NC-CSPs

Aproposal

NC-CSPs are expressive

NC-CSPs are expressive

NC-CSPs are expressive

But they skip on quantum complexity classes

Local-Hamiltonian fills the gap

Guided-LH (Gharibian, Le Gall)

Open problem

- Restricting the dimension of observable => nondeterministic classes
- Requiring that the observables are efficiently implementable (in BQP)

Remember this picture?

Remember this picture?

Open problem

$$\max \sum \frac{1 - tr(X_i X_j)}{2}$$

s.t. X_i is unitary with ± 1 eigenvalues

and X_i has an efficient circuit

- Two generalization of CSPs in quantum information
 - Local Hamiltonians
 - NC-CSPs
- NC-CSPs share the algebraicity of classical CSPs
- We have been able to reach almost the same maturity in NC-CSPs
- Many of the CS tools applicable to CSPs are algebraic in nature
- For Local Hamiltonian we need to invent new tools
- But QMA we may be able to understand better
 - if we find an NC-CSP that captures it!