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• 2024-2025 (new directions): Use these operator optimization problems to better understand 

• Classical objects (unique games conjecture and plurality-is-stablest conjecture) 

• Quantum complexity classes (quantum NP)
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Constraint Satisfaction Problems (CSPs)

Variables  taking values in a finite alphabetx1, x2, …, xn

and a number of constraints imposed on them, e.g.  .x1 − x2 = 1

We think of them as optimization problems: Find an 
assignment that satisfies the most number of constraints.

When we say we can approximate CSP X to an 
approximation ratio of , it means that there is a 
polynomial-time algorithm that is guaranteed to find an 

assignment satisfying  of the constraints.
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Here  is the maximum number of constraints that can be satisfied.OPT
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Classical Constraint Satisfaction

Examples: 3SAT, LabelCover , LinearSystems, ...
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LabelCover

πe : {1,2,3,4} → {1,2,3,4}

UniqueLabelCover

special case where all  are one-to-oneπe

Classical Constraint Satisfaction



The PCP theorem is a statement about the LabelCover problem: 

It is NP-hard to approximate LabelCover to any constant approximation ratio. 

The unique games conjecture (UGC) is a statement about the 
UniqueLabelCover problem: 

It is NP-hard to approximate UniqueLabelCover to any constant approximation 
ratio.
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What is remained to do for 
OP-CSPs?



Quantum generalizations of CSPs

OP-CSP
Q-CSP

CSP NC-CSP

Q-CSP is short for quantum-CSP

NC-CSP is short for noncommutative-CSP

OP-CSP is short for operator-CSP

?



And what is the outlook on 
the future?
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Quantum-NP

Quantum-NP is also known as QMA.  
Recall the proof verification definition of NP?  
Proof is a string in that definition.  
If you allow the proof to be a quantum state, then you arrive at the definition of Quantum-NP.

prover

efficient verifier

proof: string

NP:

proof: quantum state

Quantum NP:

prover

efficient verifier

Complexity Landscape: But why quantum 
classes are not present in this picture? RE (undecidable)



P
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Quantum-NP

In fact, there is a natural variant of operator CSPs that falls in Quantum-NP. 

And this could improve our understanding of this complexity class (and quantum 
computing as consequence).

Complexity Landscape: But why quantum 
classes are not present in this picture? RE (undecidable)
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• First example and why do we care?  

• Second example, algorithmic results, and 
hardness of approximation
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Pauli matrices: 

                     ,      ,       ,        . 

 is called the Kronecker products. 

For example  is the matrix .

I = [1 0
0 1] X = [0 1

1 0] Y = [0 −i
i 0 ] Z = [1 0

0 −1]

⊗

I ⊗ X

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
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Our matrices are unitary operators with two eigenvalues . 

Such matrices are called binary observables. They model quantum measurements 
with binary outcomes. 

±1

Think of them as some generalization of binary random variables with some 
strangeness sprinkled on top: 

probability theory ---> quantum probability theory 
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Commutation relations: Pair of matrices sharing a row or column commute. 

Quantum measurement destroys (collapses) the state of the system. 

So the order of measurement is very crucial.  
 
But, when two observables commute, the order of measurement does not matter.
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A bit more formally: In every solution, every off-diagonal pair of observables  
must anticommute. That is for example  .  
 
And every two anticommuting observables are isometrically equivalent to Pauli 
operators  and . 

X21X12 = − X12X21

X Z
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The magic of MagicSquare: 
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MagicSquare as a nonlocal game

player 1 player 2

referee

 are xij ±1

x11 +1

+1

+1

+1 +1 −1

x12 x13

x21 x22 x23

x31 x32 x33

The magic of MagicSquare: 
By playing MagicSquare with two players and just observing their winning statistics we can infer 

1. whether they are using quantum devices (test of quantum-ness) 

2. and if they win all the rounds, the very precise specification of their devices,  
because of the uniqueness of the operator solution (device-independent cryptography) 

 
The applications of MagicSquare: 

1. Device independent cryptography (Vazirani, Vidick 2014) 

2. Verifying the result of a quantum computation (Reichardt, Unger, Vazirani,2012 , Mahadev 2018) 

3. Delegation of quantum computation (Broadbent 2015) 

4. Complexity theory:  (Ji, Natarajan, Vidick, Wright, Yuen 2020) 

5. Physics (Bell's Theorem): Nature can generate correlations that would be impossible to generate  
based on classical mechanics (Bell 1964, Nobel Prize in Physics 2022) 

MIP * = RE



• First example and why do we care?  

• Second example, algorithmic results, and 
hardness of approximation



MaxCut or Max-2-Colouring



Max-2-Colouring (MaxCut)

∑
(i,j)∈E

1 − xixj

2

s.t.            is a binary  variablexi {−1, + 1}

G = (V, E)

max
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Noncommutative MaxCut
∑

(i,j)∈E

1 − tr(XiXj)
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MaxCut

∑
(i,j)∈E

1 − xixj

2

s.t.            is a binary  variablexi {−1, + 1}

max

s.t.            is a binary observableXi

max

G = (V, E)

Recall: an observable is a unitary operator with  eigenvalues. 

Trace function  is dimension-normalized. 

The optimization is over all finite dimensions. 
 

{−1, + 1}

tr



Noncommutative MaxCut
tr( ∑

(i,j)∈E

γijXiXj)

MaxCut (compact)

∑
(i,j)∈E

γijxixj

s.t.      is a binary  variablexi {−1, + 1}

max

s.t.        is a binary observableXi

max

, and let  be the LaplacianG = (V, E) Γ = [γij]

Recall: an observable is a unitary operator with  eigenvalues. 

Trace function  is dimension-normalized. 

The optimization is over all finite dimensions. 
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Noncommutative MaxCut

MaxCut (compact)

max
xi∈{±1} ∑

(i,j)∈E

γijxixj

max
Xi∈Obs(d) ∑

(i,j)∈E

γij⟨Xi, Xj⟩

, and let  be the LaplacianG = (V, E) Γ = [γij]

 is the set of observables on a -dimension vector space. 

 
 

Obs(d) d

⟨Xi, Xj⟩ = tr(X*i Xj) = tr(XiXj)



MaxCut: simple inequalities
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MaxCut: simple inequalities
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γij⟨Xi, Xj⟩ ≤
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The reason we call the last column the SDP value is that 
 
 
              can be restated as the semidefinite program         max

vi∈ℝd ∑
(i,j)∈E

γij⟨vi, vj⟩ max
V≥0

⟨Γ, V⟩

diag(V ) = I

 

 is the Laplacian matrix of  

G = (V, E)

Γ = [γij] G

max
vi∈ℝd ∑

(i,j)∈E

γij⟨vi, vj⟩

∥vi∥ = 1

∥vi∥ = 1



Do you recall that in noncommutative MagicSquare there were also some commutation relations?

                                               are binary observables and satisfy the row and column commutation relations Xij
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Noncommutative value

Why did not we impose these commutation relations in our NC-MaxCut?
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 is the Laplacian matrix of  

G = (V, E)

Γ = [γij] G

We can, but we obtain a different noncommutative generalization, we call Q-MaxCut: 
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[Xi, Xj] = I
 for all  (i, j) ∈ E
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(Each of these values corresponds to a type of quantum strategy in the nonlocal games literature.) 
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MaxCut: all the flavours

Q-MaxCutMaxCut NC-MaxCut Vector-MaxCut
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MaxCut: Tsirelson's Proof

There exists an isometry  such that when  is a unit vector, 
 is a binary observable.  
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There exists an isometry  such that when  is a unit vector, 
 is a binary observable.  

Apply the isometry to the vectors in the SDP solution 
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MaxCut: Tsirelson's Proof

Construction of Tsirelson's isometry 
Let  be the Weyl-Brauer operators: 

      They are binary observables, and they pairwise anticommute. 

Then the isometry on  is given by 
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MaxCut: Best Algorithms
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noncommutative operators. 
So we cannot use it for the quantum value. 
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• Q-PCP says Q-LabelCover is hard to approximate (Ji, Natarajan, Vidick, Wright, Yuen). 

•  NC-PCP says NC-LabelCover is hard to approximate (Ji, Natarajan, Vidick, Wright, Yuen). 

• We cannot have NC-UGC. This is because there is a good algorithm for NC-UniqueLabelCover (Kempe, Regev, Toner). 

• But UGC and Q-UGC are still in the realm of possibilities.
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PCP

UGC
CSP

Q-PCP
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Classical CSPs (commutation) Q-CSPs (some commutation)
has the same theory of approximation 

Exists only for -CSPs2

NC-CSPs (no commutation)

but similar proof techniques will perhaps work? 
exiting twists!

Q-CSP is short for Quantum-CSP. 

NC-CSP is short for Noncommutative-CSP. 

In a -CSP every constraint involves only two variables. 
 

2
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Unlike NC-MaxCut (which can be solved in poly-time), we know NC-Max-3-Cut is undecidable (Ji)



Where to take this next (final part) 
 

NC-CSPs and quantum complexity classes
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We know much more about the hardness of approximation of the upper branch.



Local Hamiltonian

Quantum generalizations of CSPs

We know much more about the hardness of approximation of the upper branch.

For example we have a PCP theorem for every member. No PCP for Local Hamiltonian though!

OP-CSP
Q-CSP

CSP NC-CSP



Why this difference between OP-CSP and Local Hamiltonian?



The algebraic nature of CS tools (sum-
check protocol, low-degree testing, 
Fourier analysis on the hypercube) 

 
fits 

 
the algebraic nature of CSPs and OP-

CSPs 



CSPs: commutative algebras 

NC-CSPs: matrix algebras 

Local Hamiltonians: not algebraic 
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• Restricting the dimension of observable => nondeterministic classes


• Requiring that the observables are efficiently implementable 



Open problem

BQP NP QMA NEXP NEEXP ... REP

OP-CSP?

∑ tr(XiXj)

s.t. Xi is an observable with an efficient 
circuit 

max



Open problem

BQP NP QMA NEXP NEEXP ... REP

OP-CSP?

∑ tr(XiXj)

s.t. Xi is an observable with an efficient 
circuit 

max

QCMA



Set of correlations

Quantum 
Correlations

Classical 
Correlations
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