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• Noncommutative CSPs: MIP* and nonlocal games 

• Quantum CSPs: local-Hamiltonian problems 
• Each captures an important physical/quantum info concept 

• Computational aspects 

• Core message is an open problem: Why this divide in quantum? 
• No divide in the classical CS between the two concepts: 

• Proof verification 

• One round multiplayer games

Plan
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Point 1:
The algebraic nature of alphabets

The transcript follows local rules: for example  is the AND of  and   x32 x22 x23

x11 x12 x13 x14

x21 x22 x23
x24

x31 x32 x33 x34

SAT formula:3

( ∼ x32 ∨ x22) ∧ ( ∼ x32 ∨ x23) ∧ (x32 ∨ ∼ x22 ∨ ∼ x23)



Point 1:
The algebraic nature of alphabets

The transcript follows local rules: for example  is the AND of  and   x32 x22 x23

x11 x12 x13 x14

x21 x22 x23
x24

x31 x32 x33 x34

SAT formula:3

( ∼ x32 ∨ x22) ∧ ( ∼ x32 ∨ x23) ∧ (x32 ∨ ∼ x22 ∨ ∼ x23)

• Boolean algebra 

•  

• Boolean hypercube 

• etc.

𝔽 n
p



The algebraic nature of alphabets

The transcript follows local rules: for example  is the AND of  and   x32 x22 x23
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9. The extent of the computable numbers.

No attempt has yet been made to show that the " computable " numbers
include all numbers which would naturally be regarded as computable. Al I
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is " What are the possible processes which can be
carried out in computing a number?"

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(6) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are
computable.

Once it is granted that computable numbers are all c: computable"".
several other propositions of the same character follow. In particular, it
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can bo
carried out by a machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of § 1.
Computing is normally done by writing certain symbols on paper. "We

may suppose this paper is divided into squares like a child's arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, i.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent j . The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

f If we regard a symbol as literally printed on a square we may suppose that the square
is 0 < x < 1, 0 < y < 1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer's ink. If these sets are restricted to be measurable, we can define
the "distance" between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer's ink unit distance is unity, and there is an
infinite supply of ink at x = 2. y = 0. With this topology the symbols form a condition-
ally compact space.
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The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers IT, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
Avays similar to the class of real numbers, it is nevertheless enumerable.
In § 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.
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17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his " state of mind " at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be '' arbitrarily close " and will be confused. Again, the restriction
is not one which seriously affects computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into "simple operations" which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
"observed" squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I think it is reasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with "immediate recognisability ", it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-



Noncommutative CSPs  
by means of examples



Magic Square

x11 x13x12

x21

x31

x22 x23

x32 x33

xij ∈ {+1, − 1}

+1

+1

+1

+1 +1 −1



What should be the noncommutative alphabet?

X11 X13X12

X21

X31

X22 X23

X32 X33

Xij ∈ ??

+I

+I

+I

+I +I −I

It should generalize the binary alphabet {+1, − 1}



Eigenvalues are on the unit circle in the complex plane

Unitary Matrices
•  are one-dimensional unitaries


• 


• Eigenvalues of a unitary are 

±1

X*X = I

eiθ



Unitary Matrices
•  are one-dimensional unitaries


• 


• Eigenvalues of a unitary are 


• How about the set of unitaries with  eigenvalues as our 
alphabet?


• Algebraically 


• The only complex numbers satisfying these are 


• Terminology: Observables

±1

X*X = I

eiθ

±1

X*X = X2 = I

±1



Observables

X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

X2
ij = I

Alphabet of the noncommutative CSP



Deterministic and Probabilistic Assignments

x11 x13x12

x21

x31

x22 x23

x32 x33

xij ∈ {+1, − 1}

+1

+1

+1

+1 +1 −1

xij are binary-outcome random 
variables 

or



X*X = I X2 = I

Observables are operator generalizations of binary random 
variables (simplified) 

• -eigenspaces


• Probability of observing  is the normalized-dimension of -eigenspace


• 


• Probability of observing  is 


•  is the dimension normalized trace

±1

1 +1

X = Π+ − Π−

1 tr(Π+)

tr



Difference: Observables and Random Variables (simplified)

• If  and  are independent binary r.v.'s then  
 
                                 


• If  and  are commuting observables 


• Then probability of observing +1 and -1 when measuring X and Y 
simultaneously is 
                   
                   
 
                                    


•  is the projection onto +1-eigenspace of 


•  is the projection onto -1-eigenspace of 

x y

Pr(x = 1,y = − 1) = Pr(x = 1)Pr(Y = − 1)

X Y

tr(
I + X

2
I − Y

2
)

I + X
2

X

I − Y
2

Y



Perfect Solution to the Noncommutative MagicSquare?

X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

X2
ij = I



Perfect Solution

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

Mermin 1990 and Peres 1990



Point2:
The algebraic nature of the alphabet in noncommutative CSPs cannot 

be ignored!



Point2:
The algebraic nature of the alphabet in noncommutative CSPs cannot 

be ignored!

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y



Point2:
The algebraic nature of the alphabet in noncommutative CSPs cannot 

be ignored!

X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

X2
ij = I

X11X12 = X12X11, X12X21 = − X21X12, ⋯



Computational Aspects 
of Noncommutative CSPs  



Max-Cut

Noncommutative Max-Cut

∑
1 − XiXj

2
s.t. Xi is unitary with  eigenvalues±1

max



Max-Cut

Noncommutative Max-Cut

∑
1 − tr(XiXj)

2
s.t. Xi is unitary with  eigenvalues±1

max



Hardness of generic NC-CSPs
• Slofstra 2016: The exact value of NC-Label-Cover is uncomputable


• Ji, Natarajan, Vidick, Wright, Yuen 2020: Approximating it is also beyond reach


• Noncommutative analogue of the PCP theorem (Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, 
Håstad)


• PCP theorem: Approximating Label-Cover is NP-hard


• NC-PCP theorem (MIP*=RE): Approximating NC-Label-Cover is RE-hard


• The day after PCP: approximability of other interesting CSPs


• Culf, M., Spirig: Approximation algorithms for noncommutative CSPs



Hardness of MaxCut
• Tsirelson 1980: NC-MaxCut is in P


• Karp 1972: Classical MaxCut is NP-hard

Best algorithm: Goemans and Williamson 

Hardness: Khot, Kindler, Mossel, O'Donnell 

Algorithm: Tsirelson 

Clifford algebra and SDPs



Hardness of Max-3-Cut

Algorithm: Frieze and Jerrum 
Goemans and Williamson 

de Klerk, Pasechnik, and Warners 

Hardness: Khot, Kindler, Mossel, O'Donnell 

Hardness: Ji 2014 

Algorithm: Culf, M., Spirig 2023 



• Unique Games Conjecture (Khot)                 =>                Noncommutative Unique Games Conjecture (M., Spirig)


• Plurality Is Stablest Conjecture                    =>                                                       ?

Hardness of Max-3-Cut



Recap of NC-CSPs



Recap of NC-CSPs
• One type of CSPs in quantum


• Very algebraic


• Product of observables


• Algebra generated by observables


• Algebra of the optimal solution


• Physics: Quantum probability, quantum correlations


• Computer Science: PCP and UGC can be extended


• Because alphabet retains its algebraic structure



Recap of NC-CSPs: Capturing Computation

NP ... REP

SAT2 SAT3 NC-- SAT3

NC-CSPs:



Recap of NC-CSPs: Capturing Computation

NP ... REP

SAT2 SAT3 NC-Max- -SAT3

NP MA NEXP NEEXP ... REP

And much more:

NC-CSPs:



Recap of NC-CSPs: Capturing Computation

NP ... REP

BQP NP MA QMA NEXP NEEXP ... REP

SAT2 SAT3 NC-Max- -SAT3

NP MA NEXP NEEXP ... REP

And much more:

NC-CSPs:

But it skips quantum computation!!



Quantum CSPs 
 

a.k.a.        local-Hamiltonians



Quantum-CSPs capture quantum computation

BQP NP MA QMA NEXP NEEXP ... REP

local-Hamiltonian problem



Assignments to Quantum CSPs: States
• Assignment to a CSP with  variables could be an element of 


• It is a vector space


• It is an algebra


• Assignment to a quantum CSP with  qubits is a quantum state


• A state is a unit-norm vector in 


• Set of states is not an algebra


• Not even a vector space


• There is a binary operation: inner-product

n 𝔽n
2

n

ℂ2n



Assignments to Quantum CSPs: States
• Classical CSPs: 


• Quantum CSPs: unit-norm vectors in  (states)


•  has a natural embedding into  


• , , ...,  in 


• , , ...,  in 


• But any superposition of these basis vectors are also quantum states


•  
 
 

𝔽n
2

ℂ2n

𝔽n
2 ℂ2n

(0,0,…,0,0) (0,0,…,0,1) (1,1,…,1,1) 𝔽 n
2

|0,0,…,0,0 > |0,0,…,0,1 > |1,1,…,1,1 > ℂ2n

α1 |0,0,…,0,0 > + α2 |0,0,…,0,1 > + ⋯ + α2n |1,1,…,1,1 >

|α1 |2 + |α2 |2 + ⋯ + |α2n |2 = 1



Open Problem

BQP NP MA QMA NEXP NEEXP ... REP

local-Hamiltonian problem

NC-CSP?

Quantum PCP Conjecture (the game version): For example see Natarajan and Nirkhe 2024

Is there a dual definition for BQP and QMA such that states are replaced by observables?



Argument against?
•   are also algebraic relations


• But it only identifies the angle between the states


• But  are stronger:


• Up to isomorphism identifies a group


• The dihedral group of order 


• Any two unitaries of any dimension satisfying these relations must be 
isometrically equivalent (in some strong sense) to Pauli matrices 
 
 

                                      and 

< u, v > = 0.5,∥u∥2 = ∥v∥2 = 1

XY = − YX, X2 = Y2 = 1

8

σx = [0 1
1 0] σy = [0 −i

i 0 ]



Bonus 1: Quantum 
Correlations



Max-Cut

Noncommutative Max-Cut

∑
1 − tr(XiXj)

2
s.t. Xi is unitary with  eigenvalues±1

max



Probabilistic Cut

1 2



Probabilistic Cut

Pr1(−1) = 0.2
Pr1(+1) = 0.8

Pr2(−1) = 0.5
Pr2(+1) = 0.5

1 2



Probabilistic Cut

Noncommutative Cut
X1 X2

Pr1(−1) = 0.2
Pr1(+1) = 0.8

Pr2(−1) = 0.5
Pr2(+1) = 0.5

1 2



Probabilistic Cut

Noncommutative Cut

Pr12(+1, + 1) = 0.1
Pr12(+1, − 1) = 0.2
Pr12(−1, + 1) = 0.3
Pr12(−1, − 1) = 0.4

X1 X2

Pr1(−1) = 0.2
Pr1(+1) = 0.8

Pr2(−1) = 0.5
Pr2(+1) = 0.5

1 2



Noncommutative Cut

Pr12(+1, + 1) = tr(
I + X1

2
I + X2

2
)

X1 X2

Pr12(+1, − 1) = tr(
I + X1

2
I − X2

2
)

Pr12(−1, + 1) = tr(
I − X1

2
I + X2

2
)

Pr12(−1, − 1) = tr(
I − X1

2
I − X2

2
)



X1 X2

Inconsistencies of Edge Probabilities

X3

X3

Pr1,2

Pr1,3

Pr1,4



Operational Interpretation of Noncommutative Cuts

i

a

j

b

i, j ∈ V,

a, b ∈ {+1, − 1}



Correlations

i

a

j

b

Pi,j(a, b)



Quantum Correlations

i

a

j

b

Pi,j(a, b)

Quantum 
Correlations



Classical Correlations

i

a

j

b

Pi,j(a, b)

Quantum 
Correlations

Classical 
Correlations



Edge Probabilities
Pi,j(a, b)

Quantum 
Correlations

i j

= Noncommutative 
Cuts

Classical 
Correlations = Probabilistic   

Cuts



MaxCut Instance

Quantum 
Correlations

Classical 
Correlations



MaxCut Instance

Quantum 
Correlations

Classical 
Correlations



The 2022 Nobel Prize in Physics awarded to Alain 
Aspect, John F. Clauser, and Anton Zeilinger

Quantum 
Correlations

Classical 
Correlations



Bonus Slides 2 



Concepts: Anticommuting Algebras and Relative Distributions

• Hyperplane rounding of Goemans-Williamson 


• A random operator 


• 's generate generalized Weyl-Brauer algebra

⃗r = (r1, …, rn)

R = r1σ1 + ⋯ + rnσn

σi



Concepts: Anticommuting Algebras and Relative Distributions

• Given a , sample unitaries  uniformly such that 


• Sample eigenvalues  from 


• What is the angle between ?


• It is the well-known Cauchy distribution

λ U, V < U, V > = λ

α, β U, V

α, β



Proof that NC-MaxCut is 
easy



Goemans-Williamson

max ∑
wij

2
(1 − xixj)

s.t. x2
i = 1

Max-Cut Max-Cut-SDP

max ∑
wij

2
(1 − ⟨ ⃗xi, ⃗xj⟩)

s.t. ⟨ ⃗xi, ⃗xi⟩ = 1

Goemans-Williamson Theorem

Max-Cut-SDP  Max-Cut  Max-Cut-SDP0.878 × ≤ ≤
Hyperplane rounding scheme

Sample vector  from the unit sphere⃗r
Let  be the sign of xi ⟨ ⃗r, ⃗xi⟩

𝔼(
1 − xixj

2
) ≥ 0.878

1 − ⟨ ⃗xi, ⃗xj⟩
2

⃗xi ⃗x

⃗r



Tsirelson’s theorem

NC-Max-Cut = Max-Cut-SDP

Tsirelson’s theoremmax Tr∑
wij

2
(1 − XiXj)

s.t. X2
i = X*i Xi = 1

NC-Max-Cut

Max-Cut-SDP

max ∑
wij

2
(1 − ⟨ ⃗xi, ⃗xj⟩)

s.t. ⟨ ⃗xi, ⃗xi⟩ = 1



Max-Cut: Proof relies on anticommutation

NC-Max-Cut = Max-Cut-SDP

Tsirelson’s theorem

• We need a bunch of operators  such that for every vector 

 such that 


• Operator  is unitary  and 




• And if  is another operator, it holds that 

σ1, …, σn
⃗x = (x1, …, xn) ∥ ⃗x∥ = 1

X = x1σ1 + ⋯ + xnσn X*X = 1
X2 = 1

Y = y1σ1 + ⋯ + ynσn
⟨X, Y⟩ = ⟨ ⃗x, ⃗y⟩

max Tr∑
wij

2
(1 − XiXj)

s.t. X2
i = X*i Xi = 1



Max-Cut: Proof relies on anticommutation

NC-Max-Cut = Max-Cut-SDP

Tsirelson’s theorem

• We need a bunch of operators  such that for every vector  such that 




• Operator  is unitary  and 


• And if  is another operator, it holds that 


• For these to hold it is necessary and sufficient that  are unitary and order-  and they are pairwise anticommuting 

σ1, …, σn ⃗x = (x1, …, xn)
∥ ⃗x∥ = 1

X = x1σ1 + ⋯ + xnσn X*X = 1 X2 = 1

Y = y1σ1 + ⋯ + ynσn ⟨X, Y⟩ = ⟨ ⃗x, ⃗y⟩

σi 2
σiσj = − σjσi

max Tr∑
wij

2
(1 − XiXj)

s.t. X2
i = X*i Xi = 1



Max-Cut: Proof relies on anticommutation

NC-Max-Cut = Max-Cut-SDP

Tsirelson’s theorem

• We need a bunch of operators  such that for every vector  such that 


• Operator  is unitary  and 


• And if  is another operator, it holds that 


• For these to hold it is necessary and sufficient that  are unitary and order-  and they are pairwise anticommuting 




• This was the relation of optimal operators in CHSH

σ1, …, σn ⃗x = (x1, …, xn) ∥ ⃗x∥ = 1

X = x1σ1 + ⋯ + xnσn X*X = 1 X2 = 1

Y = y1σ1 + ⋯ + ynσn ⟨X, Y⟩ = ⟨ ⃗x, ⃗y⟩

σi 2
σiσj = − σjσi

max Tr∑
wij

2
(1 − XiXj)

s.t. X2
i = X*i Xi = 1



Max-Cut: Proof relies on anticommutation

NC-Max-Cut = Max-Cut-SDP

Tsirelson’s theorem

• We need a bunch of operators  such that for every vector  such that 


• Operator  is unitary  and 


• And if  is another operator, it holds that 


• For these to hold it is necessary and sufficient that  are unitary and order-  and they are pairwise anticommuting 




• This was the relation of optimal operators in CHSH


• Similarly, in the optimal solution of NC-Max-Cut we have 

σ1, …, σn ⃗x = (x1, …, xn) ∥ ⃗x∥ = 1

X = x1σ1 + ⋯ + xnσn X*X = 1 X2 = 1

Y = y1σ1 + ⋯ + ynσn ⟨X, Y⟩ = ⟨ ⃗x, ⃗y⟩

σi 2
σiσj = − σjσi

XiXj + XjXi = λijI

max Tr∑
wij

2
(1 − XiXj)

s.t. X2
i = X*i Xi = 1


