Constraint Satisfaction in the Quantum World

Algebras, CSPs, and Quantum Computing

$$\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ dots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{array}
ight.$$

System of equations

```
\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ dots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{array}
ight.
```


System of equations

```
\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ dots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{array}
ight.
```


System of equations

Ising model

MaxCut

Ising model

Quantum Ising model

XOR games

Ising model

Quantum Ising model (local Hamiltonians)

XOR games (nonlocal games, MIP*,...)

Classical CSPs (constraint satisfaction problems)

Local Hamiltonians

Nonlocal games

Classical CSPs (constraint satisfaction problems)

A rich extension

Local Hamiltonians

Classical CSPs

$$E = \sum_{i,j} J_{ij} x_i x_j$$

$$x_i \in \{-1, +1\}$$

$$E = \sum_{i,j} J_{ij} x_i x_j = \sum_{i,j} x_i x_j \qquad x_i \in \{-1, +1\}$$

 $x_i \in \{-1, +1\}$

Minimize
$$\sum_{i,j} x_i x_j$$

Minimize
$$\sum_{i,j} x_i x_j$$

Minimize
$$\sum_{i,j} x_i x_j$$

2-coloring

Minimize
$$\sum_{i,j} x_i x_j$$

Minimize
$$\sum_{i,j} x_i x_j$$

 $\sum_{i,j} x_i x_j$

Subject to: $x_i \in \{-1, +1\}$

Higher-dimensional relaxation

Minimize $\sum_{i,j} \langle \vec{x}_i, \vec{x}_j \rangle$
Subject to: $d \in \mathbb{N}$
 $\vec{x}_i \in \mathbb{R}^d$
 $\|\vec{x}_i\| = 1$

 $\sum_{i,j} x_i x_j$

Subject to: $x_i \in \{-1, +1\}$

Higher-dimensional relaxations

Minimize	$\sum_{i,j} \langle \vec{x}_i, \vec{x}_j \rangle$	Minimize	$\sum_{i,j} \langle X_i, X_j \rangle$
Subject to:	$d \in \mathbb{N}$	Subject to:	$d \in \mathbb{N}$
	$\vec{x}_i \in \mathbb{R}^d$		$X_i \in \mathbb{C}^{d \times d}$
	$\ \vec{x}_{i}\ = 1$		

Subject to: $x_i \in \{-1, +1\}$

 $\sum_{i,j} x_i x_j$

Higher-dimensional relaxations

Minimize	$\sum_{i,j} \langle \vec{x}_i,$	$\vec{x}_j \rangle$ Minimize	$\sum_{i,j} \langle X_i, X_j \rangle$
Subject to:	$d \in \mathbb{N}$	Subject to:	$d \in \mathbb{N}$
	$\vec{x}_i \in \mathbb{R}^d$		$X_i \in \mathbb{C}^{d \times d}$
	$\ \vec{x}_i\ = 1$?

 $\sum_{i,j} x_i x_j$

Subject to: $x_i \in \{-1, +1\}$

Higher-dimensional relaxations

Minimize	$\sum_{i,j} \langle \vec{x}_i, \vec{x}_j \rangle$	Minimize	$\sum_{i,j} \langle X_i, X_j \rangle$
Subject to:	$d \in \mathbb{N}$	Subject to:	$d \in \mathbb{N}$
	$\vec{x}_i \in \mathbb{R}^d$		$X_i \in \mathbb{C}^{d \times d}$
	$\ \vec{x}_{i}\ = 1$	X_{l}	is a unitary operator
		with	$\{-1, +1\}$ eigenvalues

 $\sum_{i,j} x_i x_j$

Subject to: $x_i \in \{-1, +1\}$

Operator 2-coloring

Minimize

Subject to:

 $d \in \mathbb{N}$ $X_i \in \mathbb{C}^{d \times d}$ $X_i \text{ is a unitary operator}$ with {-1, +1} eigenvalues

Subject to: $x_i \in \{-1, +1\}$

Minimize $\sum_{i,j} \langle X_i, X_j \rangle$ $\langle X_i, X_j \rangle = \frac{\operatorname{Tr}(X_i^{\dagger}X_j)}{d} = \operatorname{tr}(X_i^{\dagger}X_j)$ Subject to: $d \in \mathbb{N}$ $X_i \in \mathbb{C}^{d \times d}$ X_i is a unitary operator

with $\{-1, +1\}$ eigenvalues

 $\sum_{i,j} x_i x_j$

Subject to: $x_i \in \{-1, +1\}$

Operator 2-coloring

Minimize

Subject to:

 $d \in \mathbb{N}$ $X_i \in \mathbb{C}^{d \times d}$ $X_i \text{ is a unitary operator}$ with {-1, +1} eigenvalues

 $\sum_{i,j} x_i x_j$

Subject to: $x_i \in \{-1, +1\}$

Operator 2-coloring

Minimize	$\sum_{i,j} \operatorname{tr}(X_i X_j)$		
Subject to:	$d \in \mathbb{N}$ $X_i \in \mathbb{C}^{d \times d}$		
	X_i is a unitary operator with $\{-1, +1\}$ eigenvalues	4	Is called a (binary) observable in quantum info

Subject to: $x_i \in \{-1, +1\}$

Operator 2-coloring

Minimize

Subject to: X_i is an observable

Operator assignment

is a generalization of

random assignment

Deterministic:

X₇

Deterministic:

 X_7

Operator:

Probabilistic:

 X_i is a unitary with $\{-1, +1\}$ eigenvalues

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

$$\operatorname{tr}(X_i X_j) = \langle \psi \, | \, X_i X_j \otimes I \, | \, \psi \rangle$$

where
$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{t=0}^{d-1} |t\rangle \otimes |t\rangle$$
 is the MES

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

$$\operatorname{tr}(X_i X_j) = \langle \psi \,|\, X_i X_j \otimes I \,|\, \psi \rangle$$
$$= \langle \psi \,|\, X_i \otimes X_j^T \,|\, \psi \rangle$$

where
$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{t=0}^{d-1} |t\rangle \otimes |t\rangle$$
 is the MES
X_i is a binary observable

$$\operatorname{tr}(X_{i}X_{j}) = \langle \psi | X_{i}X_{j} \otimes I | \psi \rangle$$
$$= \langle \psi | X_{i} \otimes X_{j}^{T} | \psi \rangle$$
$$= \langle \psi | X_{i} \otimes X_{j} | \psi \rangle$$

where
$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{t=0}^{d-1} |t\rangle \otimes |t\rangle$$
 is the MES

Simultaneously measuring observables X_i and X_j on halves of MES

 X_i is a binary observable

$$\operatorname{tr}(X_{i}X_{j}) = \langle \psi | X_{i}X_{j} \otimes I | \psi \rangle$$
$$= \langle \psi | X_{i} \otimes X_{j}^{T} | \psi \rangle$$
$$= \langle \psi | X_{i} \otimes X_{j} | \psi \rangle$$

where
$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{t=0}^{d-1} |t\rangle \otimes |t\rangle$$
 is the MES

Simultaneously measuring observables X_i and X_j on halves of MES

$$= \Pr(x_i x_j = 1) - \Pr(x_i x_j = -1)$$

and letting
$$x_i$$
 and x_j denote the outcome of measurements

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

$$\operatorname{tr}(X_{i}X_{j}) = \langle \psi | X_{i}X_{j} \otimes I | \psi \rangle$$
$$= \langle \psi | X_{i} \otimes X_{j}^{T} | \psi \rangle$$
$$= \langle \psi | X_{i} \otimes X_{j} | \psi \rangle$$

where
$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{t=0}^{d-1} |t\rangle \otimes |t\rangle$$
 is the MES

Simultaneously measuring observables X_i and X_j on halves of MES

$$= \Pr(x_i x_j = 1) - \Pr(x_i x_j = -1)$$

and letting
$$x_i$$
 and x_j denote the outcome of measurements

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

 $tr(X_iX_j) = Pr(x_ix_j = 1) - Pr(x_ix_j = -1)$

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

 $tr(X_iX_j) = Pr(x_ix_j = 1) - Pr(x_ix_j = -1)$

Similarly in probability theory

 \mathbf{x}_i is a random variable with outcomes $\{-1, +1\}$

 \mathbf{x}_i is a binary random variable

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

 $tr(X_iX_j) = Pr(x_ix_j = 1) - Pr(x_ix_j = -1)$

Similarly in probability theory

 \mathbf{x}_i is a random variable with outcomes $\{-1, +1\}$

 \mathbf{x}_i is a binary random variable

 $\mathbb{E}(\mathbf{x}_i \mathbf{x}_j) = \Pr(\mathbf{x}_i \mathbf{x}_j = +1) - \Pr(\mathbf{x}_i \mathbf{x}_j = -1)$

 X_i is a unitary with $\{-1, +1\}$ eigenvalues in $\mathbb{C}^{d \times d}$

 X_i is a binary observable

 $tr(X_iX_j) = Pr(x_ix_j = 1) - Pr(x_ix_j = -1)$

Similarly in probability theory

 \mathbf{x}_i is a random variable with outcomes $\{-1, +1\}$

 \mathbf{x}_i is a binary random variable

 $\mathbb{E}(\mathbf{x}_i \mathbf{x}_j) = \Pr(\mathbf{x}_i \mathbf{x}_j = +1) - (\mathbf{x}_i \mathbf{x}_j = -1)$

Operator CSPs

can be formulated as

entangled nonlocal games

$$\Pr_{i,j}(a,b) = \operatorname{tr}(\frac{I + aX_i}{2} \frac{I + bX_j}{2})$$

J ↓ b

J ↓ *b*

) ↓ b

for the rest of the talk all we care is ...

CSP: polynomial optimization over \mathbb{C}

CSP: polynomial optimization over \mathbb{C}

OP-CSP: polynomial optimization over matrix algebras $\mathbb{C}^{d \times d}$

Minimize
$$\sum_{i,j} \operatorname{tr}(X_i X_j)$$

Subject to: $X_i^2 = X_i^* X_i = 1$
 $X_i \in \mathbb{C}^{d \times d}$
 $d \in \mathbb{N}$

Approximation algorithms for constraint satisfaction problems

Constraint satisfaction

A rich extension

Operator constraint satisfaction

The algebraic nature of our tools

fits

the algebraic nature of CSPs and OP-CSPs

The algebraic nature of our tools

fits

the algebraic nature of CSPs and OP-CSPs

(sum-check protocol, low-degree testing, Fourier analysis on the hypercube)

A classical theorem involving NP-hard and CSP

A classical theorem involving NP-hard and CSP

becomes

A theorem that involves RE-hard and OP-CSP

CSPs in classical and quantum worlds

Other Quantum CSPs

Local Hamiltonians

Operator Ising model

Minimize $\sum_{i,j} \operatorname{tr}(X_i X_j)$

Subject to: X_i is an observable

Operator Ising model — A feasible solution

Minimize
$$\sum_{i,j} \operatorname{tr}(X_i X_j)$$

$$X_i = \overbrace{I \otimes I \otimes \cdots \otimes \sigma^x}^{i} \otimes \cdots \otimes I = \sigma_i^x$$

Subject to: X_i is an observable

Operator Ising model — A feasible solution

Minimize $\sum_{i,j} \operatorname{tr}(X_i X_j)$

$$X_i = \overbrace{I \otimes I \otimes \cdots \otimes \sigma^x}^i \otimes \cdots \otimes I = \sigma_i^x$$

Operator Ising model — A feasible solution

$$X_i = \overbrace{I \otimes I \otimes \cdots \otimes \sigma^x}^i \otimes \cdots \otimes I = \sigma_i^x$$

Optimize over all states — Value of this solution

Minimize
$$\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x | \psi \rangle$$

 $\sum_{i,j} \operatorname{tr}(\sigma_i^x \sigma_j^x)$

Operator Ising model

Minimize $\sum_{i,j} \operatorname{tr}(X_i X_j)$

Subject to: X_i is an observable

Optimize over all states

Minimize

$$\sum_{i,j} \langle \psi \, | \, \sigma_i^x \sigma_j^x | \, \psi \rangle$$

Operator Ising (optimize over operators)

Minimize
$$\sum_{i,j} \operatorname{tr}(X_i X_j)$$

Subject to: X_i is an observable

Optimize over all states

Minimize $\sum_{i=1}^{n}$

$$\sum_{i,j} \langle \psi \, | \, \sigma^x_i \sigma^x_j | \psi
angle$$

Operator Ising (optimize over operators)

Minimize
$$\sum_{i,j} \operatorname{tr}(X_i X_j)$$

Subject to: X_i is an observable

Optimize over all states equivalent to classical Ising

Minimize
$$\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x | \psi \rangle$$

Subject to: $|\psi\rangle$ is a state

Minimize $\sum_{i,j} x_i x_j$

Subject to: $x_i^2 = 1$

Classical Ising model

Minimize $\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x | \psi \rangle$

Classical Ising model

Minimize $\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x | \psi \rangle$

Subject to: $|\psi\rangle$ is a state

Quantum Heisenberg model

Minimize
$$\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y + \sigma_i^z \sigma_j^z | \psi \rangle$$

Classical Ising model

Minimize $\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x | \psi \rangle$

Subject to: $|\psi\rangle$ is a state

Quantum Heisenberg model

Minimize
$$\sum_{i,j} \langle \psi | \sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y + \sigma_i^z \sigma_j^z | \psi \rangle$$

Local Hamiltonian terms: $\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y + \sigma_i^z \sigma_j^z$

A special case of the local Hamiltonian problem

Variables:

Objective function:

-1, +1

 $x_1x_2 + x_2x_3 + \cdots$

Variables:

-1, +1

Objective function:

 $x_1x_2 + x_2x_3 + \cdots$

 X_3

Observables

 $\operatorname{tr}\left(X_1X_2 + X_2X_3 + \cdots\right)$

 X_3 X_2 X_4 X_4 X_5 X_8 X_6 X_7

Variables:

-1, +1

Objective function:

 $x_1x_2 + x_2x_3 + \cdots$

Observables

 $\operatorname{tr}\left(X_1X_2 + X_2X_3 + \cdots\right)$

Qubits

 $\langle \psi | \sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y + \sigma_1^z \sigma_2^z | \psi \rangle + \cdots$

Not algebraic

Approximation algorithms for constraint satisfaction problems

CSPs: commutative algebras 🙃

OP-CSPs: matrix algebras

CSPs: commutative algebras 🙃

OP-CSPs: matrix algebras

Local Hamiltonians: not algebraic

Algorithms for OP-CSPs

MaxCut

s.t. x_i is ± 1

OP-MaxCut

max	$\sum J_{ij} tr(X_i X_j)$
-----	---------------------------

s.t. X_i is an observable

MaxCut

OP-MaxCut

max	$\sum J_{ij} tr(X_i X_j)$
-----	---------------------------

s.t. X_i is an observable

• Karp 1972: MaxCut is NP-Complete (is hard)

OP-MaxCut

nax	$\sum J_{ij} tr(X_i X_j)$	

s.t. X_i is an observable

- Karp 1972: MaxCut is NP-Complete (is hard)
- Tsirelson 1980: OP-MaxCut is in P (is efficiently solvable)

- Karp 1972: MaxCut is NP-Complete (is hard)
- Tsirelson 1980: OP-MaxCut is in P (is efficiently solvable)
- The best algorithm for MaxCut is SDP rounding by Goemans and Williamson

- Karp 1972: MaxCut is NP-Complete (is hard)
- Tsirelson 1980: OP-MaxCut is in P (is efficiently solvable)
- The best algorithm for MaxCut is SDP rounding by Goemans and Williamson
- Tsirelson's algorithm is an operator generalization of Goemans and Willamson

Max-3-Cut

(a) Example of a partition of vertices into three subsets

(b) Max-3-Cut as a polynomial optimization

Max-3-Cut

(a) Example of a partition of vertices into three subsets

(b) Max-3-Cut as a polynomial optimization

OP-Max-3-Cut

$$\begin{array}{ll} \text{maximize:} & \sum_{(i,j)\in E} \frac{2-\left\langle X_i,X_j\right\rangle-\left\langle X_j,X_i\right\rangle}{3} \\ \text{subject to:} & X_i \text{ unitary with eigenvalues } 1,\omega,\omega^2. \end{array}$$

Best algorithms for Max-3-Cut

Frieze and Jerrum

Culf, M., Spirig

A classical theorem involving NP-hard and CSP

becomes

A theorem that involves RE-hard and OP-CSP

Hardness of Approximation for OP-CSPs

Hardness front: PCP theorem

• PCP theorem: Approximating Label-Cover is NP-hard (Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)

 NC-PCP theorem (MIP*=RE): Approximating OP-Label-Cover is RE-hard (Ji, Natarajan, Vidick, Wright, Yuen 2020)

Hardness front: PCP theorem

• PCP theorem: Approximating Label-Cover is NP-hard (Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)

 NC-PCP theorem (MIP*=RE): Approximating OP-Label-Cover is RE-hard (Ji, Natarajan, Vidick, Wright, Yuen 2020)

• Compare this with the situation for the Local Hamiltonian problem (LH):

Quantum PCP conjecture: Approximating Local Hamiltonian is QMA-hard

Hardness front: Unique games conjecture (UGC)

• Similarly UGC has an operator analogue

 Assuming UGC, approximating MaxCut to better than 0.878 is NP-hard (Khot, Kindler, Mossel, O'Donnell)

 Assuming Q-UGC, approximating Q-MaxCut to better than 0.878 is RE-hard (M., Spirig)

*Q-MaxCut is a version of OP-MaxCut we did not discuss in the talk!

OP-CSPs and complexity classes

They also capture all the nondeterministic classes

They also capture all the nondeterministic classes

But they skip on quantum complexity classes!

But they skip on quantum complexity classes

Local-Hamiltonian fills the gap

- Restricting the dimension of observable => nondeterministic classes
- Requiring that the observables are efficiently implementable

 $\max \sum tr(X_i X_j)$

s.t. X_i is an observable with an efficient circuit

Set of correlations

Efficiently generated correlations

Summary

- Two generalization of CSPs in quantum information
 - Local Hamiltonians
 - OP-CSPs
- OP-CSPs share the algebraicity of classical CSPs
- We have been able to reach almost the same maturity in OP-CSPs
- Many of the CS tools applicable to CSPs are algebraic in nature
- For Local Hamiltonian we need to invent new tools
- But we may be able to understand QMA better
 - if we find an OP-CSP that captures it!

But why in Computer Science?

Magic Square
Perfect Operator Solution

Mermin 1990 and Peres 1990

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
$Z \otimes X$	$X \otimes Z$	$Y \bigotimes Y$	+I
+I	+I	-I	

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	+1	
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	+1	\longrightarrow
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	+1	

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I

+1 +1 -1

+I +I -I

 $x_{ij} \in \{+1, -1\}$

			7					_
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	+1		$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	+1	\longrightarrow	$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	+1		$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I
+1	+1	-1]		+I	+I	- <i>I</i>	I
$x_{ij} \in \{+1, -1\}$								

Binary alphabet $\{+1, -1\}$ in the classical case \longrightarrow Binary observables

			-					
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	+1		$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	+1	\longrightarrow	$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	+1		$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I
+1	+1	-1	_		+I	+I	-I	
$x_{ij} \in \{+1, -1\}$								

Binary alphabet $\{+1, -1\}$ in the classical case \longrightarrow Binary observables

Binary observables: Unitary operators with $\{+1, -1\}$ eigenvalues $O^*O = O^2 = I$

An operator CSP

$$X_{ij}^* X_{ij} = I$$

$$X_{ij}^* X_{ij} = I$$

$$X_{21}^2 = I$$

$$X_{31}^2 = I$$

$$X_{31} = X_{32} = X_{33} + I$$

$$+I = +I = -I$$

An operator CSP

When restricting to one dimension we recover the classical CSP

Because ± 1 are the only binary observables is one dimension

Perfect Operator Solution: algebraic structure

Mermin 1990 and Peres 1990

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
$Z \otimes X$	$X \otimes Z$	$Y \bigotimes Y$	+I
+I	+I	-I	

Uniqueness of the perfect solution

$$X_{11}X_{12} = X_{12}X_{11}, \quad X_{12}X_{21} = -X_{21}X_{12}, \quad \bullet \bullet \bullet$$