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Local Hamiltonians: not algebraic 

☺
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• Karp 1972: MaxCut is NP-Complete (is hard)


• Tsirelson 1980: OP-MaxCut is in P (is efficiently solvable)


• The best algorithm for MaxCut is SDP rounding by Goemans and Williamson


• Tsirelson's algorithm is an operator generalization of Goemans and Willamson
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Max-3-Cut

OP-Max-3-Cut



Best algorithms for Max-3-Cut

Frieze and Jerrum Culf, M., Spirig



A classical theorem 
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• PCP theorem: Approximating Label-Cover is NP-hard  

(Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)


• NC-PCP theorem (MIP*=RE): Approximating OP-Label-Cover is RE-hard  
(Ji, Natarajan, Vidick, Wright, Yuen 2020)


• Compare this with the situation for the Local Hamiltonian problem (LH): 
 
              Quantum PCP conjecture: Approximating Local Hamiltonian is QMA-hard



Hardness front: Unique games conjecture (UGC)

• Similarly UGC has an operator analogue


• Assuming UGC, approximating MaxCut to better than 0.878 is NP-hard  
(Khot, Kindler, Mossel, O'Donnell)


• Assuming Q-UGC, approximating Q-MaxCut to better than 0.878 is RE-hard  
(M., Spirig) 
 
 
 
 
*Q-MaxCut is a version of OP-MaxCut we did not discuss in the talk!
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NP REP

SAT2 SAT (Cook levin)3 OP- SAT (Ji, Natarajan, Vidick, Wright, Yuen)3

NP NEXP NEEXP ... REP

Π2

(Nezhadi, M., Yuen)

one dimension exp dimensions doubly exp dimensions unbounded dimensions

They also capture all the nondeterministic classes
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But they skip on quantum complexity classes



Local-Hamiltonian fills the gap

BQP NP QMA NEXP NEEXP ... REP

Local Hamiltonians (Kitaev)



Open problem

BQP NP QMA NEXP NEEXP ... REP

OP-CSP?



Open problem

BQP NP QMA NEXP NEEXP ... REP

OP-CSP?

• Restricting the dimension of observable => nondeterministic classes


• Requiring that the observables are efficiently implementable 
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BQP NP QMA NEXP NEEXP ... REP

OP-CSP?

∑ tr(XiXj)

s.t. Xi is an observable with an efficient 
circuit 

max

QCMA



Set of correlations

Quantum 
Correlations

Classical 
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Efficiently generated correlations

Quantum 
Correlations

Classical 
Correlations

Efficient 
Correlations



• Two generalization of CSPs in quantum information 

• Local Hamiltonians 

• OP-CSPs 

• OP-CSPs share the algebraicity of classical CSPs 

• We have been able to reach almost the same maturity in OP-CSPs 

• Many of the CS tools applicable to CSPs are algebraic in nature 

• For Local Hamiltonian we need to invent new tools 

• But we may be able to understand QMA better 

• if we find an OP-CSP that captures it!

Summary



But why in Computer Science?



Magic Square

x11 x13x12

x21

x31

x22 x23

x32 x33

xij ∈ {+1, − 1}

+1

+1

+1

+1 +1 −1



Perfect Operator Solution

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

Mermin 1990 and Peres 1990



I ⊗ X X ⊗ I X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

+I

+I

+I

+I +I −I

x11 +1

+1

+1

+1 +1 −1

x12 x13

x21 x22 x23

x31 x32 x33

xij ∈ {+1, − 1}

⟶



Binary alphabet  in the classical case  Binary observables{+1, − 1} ⟶

I ⊗ X X ⊗ I X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

+I

+I

+I

+I +I −I

x11 +1

+1

+1

+1 +1 −1

x12 x13

x21 x22 x23

x31 x32 x33

xij ∈ {+1, − 1}

⟶



Binary alphabet  in the classical case  Binary observables{+1, − 1} ⟶

Binary observables: Unitary operators with  eigenvalues {+1, − 1}
O*O = O2 = I

I ⊗ X X ⊗ I X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

+I

+I

+I

+I +I −I

x11 +1

+1

+1

+1 +1 −1

x12 x13

x21 x22 x23

x31 x32 x33

xij ∈ {+1, − 1}

⟶



X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

X2
ij = I

An operator CSP



X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

X2
ij = I

An operator CSP

When restricting to one dimension we recover the classical CSP

Because  are the only binary observables is one dimension±1



Perfect Operator Solution: algebraic structure

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

Mermin 1990 and Peres 1990



Uniqueness of the perfect solution

X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

X2
ij = I

X11X12 = X12X11, X12X21 = − X21X12, ⋯


