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• Approximating the value of NC-CSPs to within any additive 
constant is RE-hard 
(Ji, Natarajan, Vidick, Wright, Yuen, 2020) 

• Exactly computing the value of NC-CSPs is -hard 
(Nezhadi, M., Yuen, 2022)

Π2

Complexity of NC-CSPs
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(Nezhadi, M., Yuen)



SAT:3

( ∼ x3 ∨ x2 ∨ x4) ∧ ( ∼ x3 ∨ ∼ x5 ∨ x1) ∧ (x3 ∨ ∼ x6 ∨ ∼ x2)

Random Assignments to CSPs



Noncommutative assignments are 
generalizations of probabilistic 

assignments 



Binary observables are operator generalizations of binary random 
variables

• -eigenspaces


• Let  be a binary-outcome random variables: 

±1

x x ∈ {+1, − 1}

X*X = I X2 = I



Binary observables are operator generalizations of binary random 
variables
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Noncommutative Max-Cut

∑
1 − tr(XiXj)

2
s.t. Xi is unitary with  eigenvalues±1

max



But what does a noncommutative cut look like?



Operational interpretation of NC-CSPs: 
Multiprover interactive proofs (nonlocal 

games)



Operational Interpretation of Noncommutative Cuts
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Where is MaxCut in this picture?
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An instance of MaxCut
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Where is MaxCut in this picture?



The 2022 Nobel Prize in Physics awarded to Alain 
Aspect, John F. Clauser, and Anton Zeilinger

Quantum 
Correlations

Classical 
Correlations



Hardness of Noncommutative MaxCut
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Hardness of Noncommutative MaxCut

∑
1 − tr(XiXj)

2
s.t. Xi is unitary with  eigenvalues±1

max

• Karp 1972: MaxCut is NP-Complete


• Tsirelson 1980: NC-MaxCut is in P


• The best classical algorithm is SDP rounding by Goemans and Williamson


• Tsirelson's algorithm is an operator generalization
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Goemans-Williamson
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Tsirelson’s theorem (operator extension of Goemans-Williamson)

NC-Max-Cut = Max-Cut-SDP

Tsirelson’s theoremmax Tr∑
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Max-3-Cut

Noncommutative Max-3-Cut



What about other NC-CSPs?

Frieze and Jerrum Culf, M., Spirig



But why in CS?
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Perfect Operator Solution

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y

Mermin 1990 and Peres 1990
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Binary alphabet  in the classical case  Binary observables{+1, − 1} ⟶
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Binary alphabet  in the classical case  Binary observables{+1, − 1} ⟶

Binary observables: Unitary operators with  eigenvalues {+1, − 1}
O*O = O2 = I
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An operator CSP

When restricting to one dimension we recover the classical CSP

Because  are the only binary observables is one dimension±1



Perfect Operator Solution: algebraic structure

I ⊗ X X ⊗ I +I
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Z ⊗ X X ⊗ Z Y ⊗ Y

Mermin 1990 and Peres 1990



Uniqueness of the perfect solution
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X11X12 = X12X11, X12X21 = − X21X12, ⋯
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Hardness of Approximation for NC-CSPs



Hardness front
• PCP theorem: Approximating Label-Cover is NP-hard  

(Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)


• NC-PCP theorem (MIP*=RE): Approximating NC-Label-Cover is RE-hard  
(Ji, Natarajan, Vidick, Wright, Yuen 2020)



Hardness front
• PCP theorem: Approximating Label-Cover is NP-hard  

(Arora, Safra, Lund, Motwani, Sudan, Szegedy, Raz, Håstad)


• NC-PCP theorem (MIP*=RE): Approximating NC-Label-Cover is RE-hard  
(Ji, Natarajan, Vidick, Wright, Yuen 2020)


• Compare this with the situation for the Local Hamiltonian problem (LH): 
 
              Quantum PCP conjecture: Approximating Local Hamiltonian is QMA-hard



Hardness front
• Similarly UGC has an NC-UGC analogue


• Assuming UGC, approximating MaxCut to better than 0.878 is NP-hard  
(Khot, Kindler, Mossel, O'Donnell)


• Assuming Q-UGC, approximating Q-MaxCut to better than 0.878 is RE-hard  
(M., Spirig)



A classical theorem 
involving NP and CSP 

becomes  

A theorem that involves 
RE and NC-CSP



The algebraic nature of CS tools (sum-
check protocol, low-degree testing, 
Fourier analysis on the hypercube) 

 
fits 

 
the algebraic nature of CSPs and NC-

CSPs 



CSPs: commutative algebras 

NC-CSPs: matrix algebras 

Local Hamiltonians: not algebraic 
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NC-CSPs are expressive
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NP MA NEXP NEEXP ... REP

(Natarajan and Nirkhe)



But they skip on quantum complexity classes

BQP NP MA QMA NEXP NEEXP ... REP



Local-Hamiltonian fills the gap

BQP NP MA QMA NEXP NEEXP ... REP

Guided-LH (Gharibian, Le Gall)

LH (Kitaev)



Open problem

BQP NP MA QMA NEXP NEEXP ... REP

NC-CSP?

• Restricting the dimension of observable => nondeterministic classes


• Requiring that the observables are efficiently implementable (in BQP)



Remember this picture?
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Open problem

BQP NP MA QMA NEXP NEEXP ... REP

NC-CSP?

∑
1 − tr(XiXj)

2
s.t. Xi is unitary with  eigenvalues±1

max

and  has an efficient circuitXi



• Two generalization of CSPs in quantum information 

• Local Hamiltonians 

• NC-CSPs 

• NC-CSPs share the algebraicity of classical CSPs 

• We have been able to reach almost the same maturity in NC-CSPs 

• Many of the CS tools applicable to CSPs are algebraic in nature 

• For Local Hamiltonian we need to invent new tools 

• But QMA we may be able to understand better 

• if we find an NC-CSP that captures it!


