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• Noncommutative Constraint Satisfaction Problems 

• Distribution of eigenvalues of pairs of random unitaries 

• Free probability for understanding this distribution on 
eigenvalues

We talk about
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random unitaries
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The random eigenvalue of pairs of unitaries
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Given a distribution on pairs of 
unitaries  we can study the 

"distribution of the relative phase "
(X, Y)

θ

Relative Distribution
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• We want  and  to have a fixed inner product 

• Given fixed unitaries  and  consider the following 
distribution on  

• Sample a Haar random unitary  

• Let  and  

• Clearly 

X Y
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Fixed inner product distribution on pairs of unitaries
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• Suppose  then  

• Then for any sample ( , ) we also have  

• so if  is a sample from our distribution of eigenvalues 
 
with probability one we have 
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• Let and let  be the relative phase r.v. 

• Then   

• So we expect  to be somewhere around 

λ = < A, B > θ

𝔼eiθ = λ

θ ∠λ

Typical behaviour (informal)



• In our example  and  λ = − 1 ∠λ = π

PDF of the relative distribution is the Dirac delta at π
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Cauchy Law (this paper)
Relative distribution of  and  is a wrapped Cauchy 

distribution with parameters that only depends on 
A B

< A, B >

• This holds only as  

• If then 

• The peak position is at  

• The scale factor is 

dim → ∞

λ = < A, B >

∠λ

ln(1/ |λ | )



PDF of relative distribution of  and  for various values of A B λ = < A, B >
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• Let  denote the distribution function 
of the relative distribution of  and  

• Then  
 

• Here  is the sum of  whenever 

ΔA,B : ℬ([0,2π)) → ℝ≥0
A B

ΔA,B(E) = 𝔼U(wUA,UB(E))

wUA,UB(E) tr(PαQβ) ∠α*β ∈ E

Proof Idea 
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• If we let                               
                                               
 
our goal is to show that the  converges to the wrapped 
Cauchy distribution with parameter  

• We just need to show that the characteristic function of     
 
                                              

λ = < A, B >

ΔA,B
λ

ΔA,B

χΔA,B
(n) → λn

Proof Idea 
part 1: convergence in distribution
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• Goal                                 

 

• For , it is easy to show that the integral is exactly  
 

• As dimension grows, we have  in -distribution 
where  and  are free 

∫ tr[U−n(UD)n]dU → tr(D)n

n = 1,2 tr(D)n

U, D → u, d *
u d

Proof Idea 
part 3: free independence



• So                                  

 
 
 
 
and the right hand side is just  
 
 
 
which is 

∫ tr[U−n(UD)n]dU → τ(u−n(ud)n)

τ(d)n

tr(D)n

Proof Idea 
part 3: free independence



Application to 
Optimization



Discrete optimization (Example)

max ∑ wijxixj

s.t. x2
i = 1



Discrete optimization (Example)

max ∑ wijxixj

s.t. x2
i = 1

• Relax to  and solve 
 

• Round to nearest discrete point  

xi ∈ [−1,1]

{−1,1}



Operator Optimization

• Imagine optimizing over unitaries with discrete set of 
eigenvalues

 and A*A = 1 A2 = 1



Operator Optimization

• Imagine optimizing over unitaries with discrete set of 
eigenvalues

 and A*A = 1 A3 = 1



Operator Optimization

• We can again relax then round



Operator Optimization

• We can again relax then round



Operator Optimization

• We can again relax then round

•  is the nearest discrete unitary (of order- ) to  Ã 3 A
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max ∑ wij < Ai, Aj >

s.t. Ai are some discrete unitaries

• Suppose we are given a solution  to the relaxation 

• Premultiplying by a Haar unitary  does not change the value 
 
                                                         

• How good is the following solution in expectation? 
                                                        
                                                        

A1, …, An

U

UA1, …, UAn

˜UA1, …, ˜UAn



• We want to compare 
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• We want to compare 
 
                                             
 
and 
        
                                                     

λ = < A, B >

𝔼U < ŨA, ŨB > = ∫ fid(θ)dΔA,B(θ)



What does fidelity look like?



Theorem

𝔼U(1 − < ŨA, ŨB > ) ≥ 0.864(1 − < A, B > )
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Application of Cauchy Law to Optimization 
If there is a unitary solution, we know there exists a nearby 

discrete unitary solution

You can often find a unitary solution by solving an SDP



• In fact we can calculate 
 
                        

where  is independent of  and !fidP A B

𝔼Utr(P(ŨA, ŨB)) = ∫ fidP(θ)dΔA,B(θ)



Noncommutative Constraint 
Satisfaction Problems
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Example of a constraint satisfaction problem
Magic Square with Matrices

X11 X13X12

X21

X31

X22 X23

X32 X33

X*ij Xij = I

+I

+I

+I

+I +I −I

Row product +I
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X*ij = Xij



Example of a constraint satisfaction problem
Matrix solution

I ⊗ X X ⊗ I +I

+I

+I

+I +I −I

X ⊗ X

Z ⊗ I I ⊗ Z Z ⊗ Z

Z ⊗ X X ⊗ Z Y ⊗ Y
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Noncommutative Max-Cut
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Max-3-Cut

Noncommutative Max-3-Cut



Transition in Complexity (Max-3-Cut)



Transition in Complexity (3-XOR)



Summary



• Free Probability      =>      Algorithmic Results for NC-CSPs 

• Many open problems: Max- -Cut, Unique-Games, Grothendieck 
Inequalities, ... 

• Hardness:  Noncommutative PCP, Noncommutative UGC, ...
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