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We talk about

 Noncommutative Constraint Satisfaction Problems
e Distribution of eigenvalues of pairs of random unitaries

* Free probability for understanding this distribution on
eigenvalues



Relative Distribution




Relative Phase - Q

between eigenvalues of
random unitaries

Random eigenvalues of pair of unitaries
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Eigenvalues of one unitary

e Sample a Haar random unitary X

e Sample an eigenvalue o
* Let P, be the projection onto a-eigenspace

* Sample o with probability tr(7 )
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Eigenvalues of pairs of unitaries

(and their relative phase)

e Sample Haar random unitaries X and Y

e Sample an eigenvalue o of X
and fof Y

*  With probability tr(P,0p) = < Py, Qs>
* P, projection onto a-eigenspace of X

* (yprojection onto j-eigenspace of ¥
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Eigenvalues of pairs of unitaries

(and their relative phase) o X
(>
e Sample Haar random unitaries X and Y
° Samp]e ei genva]ue (a’ ﬁ) of Xand Y The random eigenvalue of pairs of unitaries

e We are interested in the random
variable

0=sa*p =4 — La



Relative Distribution

Given a distribution on pairs of
unitaries (X, Y) we can study the
"distribution of the relative phase 6"
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Fixed inner product distribution on pairs of unitaries

e We want X and Y to have a fixed inner product

e Given fixed unitaries A and B consider the following
distribution on (X, Y)

e Sample a Haar random unitary U

e LetX=UAandY = UB

e Clearly < X, Y >=<A,B>
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An example

e Suppose <A, B>=—1thenB=-A

e Then for any sample (X,Y) we also have Y = — X

e soif (a, f)is a sample from our distribution of eigenvalues

with probability one we have f = — «
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PDF of the relative distribution is the Dirac delta at
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Typical behaviour (informal)

e Let A = < A, B> and let 0 be the relative phase r.v.
e ThenEe” =)

e So we expect @ to be somewhere around £A4



e InourexampleA=—1landzZAi ==

PDF of the relative distribution is the Dirac delta at 7
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PDF of relative distribution of A and B for various valuesof A = < A, B >
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of the relative distribution of A and B



Proofldea

e Let A, 5 HAB([0,27)) — R, denote the distribution function
of the relative distribution of A and B

e Here wy, p(E) is the sum of tr(P,0p) whenever Za*f € E



Proof Idea
part I: convergence in distribution

o [fwelet
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Cauchy distribution with parameter A



Proof Idea
part I: convergence in distribution

o [fwelet
A=<A,B>

our goal is to show that the A, 3 converges to the wrapped

Cauchy distribution with parameter A

o We just need to show that the characteristic function of A AB

)(AA’B(H) — A"



Proofldea
part 2: characteristic function

o The characteristic function of relative distribution A, g is

xa, (1) = [ U-(UD)dU

where D is A*B



Proofldea
part 2: characteristic function

o The characteristic function of relative distribution A, g is

xa, (1) = [ U-(UD)dU

where D is A*B

e In fact we can assume D is diagonal



Proof Idea
part 3: freeindependence

P

. Goal trflU(UD)'ldU — tr(D)"




Proof Idea
part 3: freeindependence

P

. Goal trfU"(UD)'|dU — tr(D)"

e Forn = 1,2, itis easy to show that the integral is exactly tr(D)"



Proof Idea
part 3: freeindependence

d

. Goal trfU"(UD)'|dU — tr(D)"

e Forn = 1,2, itis easy to show that the integral is exactly tr(D)"

e As dimension grows, we have U, D — u, d in *-distribution
where u and d are free



ProofIdea

part 3: freeindependence

e S0 trf[UT"(UD)"|dU —

and the right hand side is just 7(d)"

which is tr(D)"

t(u™"(ud)")



Application to
Optimization



Discrete optimization (Example)

max Y wces

st. x7=1



Discrete optimization (Example)

max ) w;xx,

st. x7=1

e Relaxtox; € [—1,1] and solve

e Round to nearest discrete point {—1,1}



Operator Optimization

* Imagine optimizing over unitaries with discrete set of
eigenvalues

A*A =1landA%?=1



Operator Optimization

* Imagine optimizing over unitaries with discrete set of
eigenvalues

A*A =1land A3 =1
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Operator Optimization

e We can again relax then round

ARES SRR



Operator Optimization

e We can again relax then round

:i /-\ L_):

e A is the nearest discrete unitary (of order-3) to A
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max Z wii <A, A;>

s.t. Al- are some discrete unitaries

e Suppose we are given a solution A, ..., A, to the relaxation

e Premultiplying by a Haar unitary U does not change the value

UA,, ..., UA

n

 How good is the following solution in expectation?

~/

UA,,...,UA

n



e We want to compare

D owy<ALA >
and

Ey ) wy < UA, UA; >



e We want to compare

A=<A,B>

and

E, < UA,UB >



e We want to compare

A=<A,B>

and

E, < UA,UB > = [fid(0)dA, 5(0)




What does fidelity look like?













e In fact we can calculate

E, tr(P(UA, UB)) = JﬁdP(H)dAA,B(Q)

where fid, is independent of A and B!



Noncommutative Constraint
Satisfaction Problems



Example of a constraint satisfaction problem
Magic Square

x; € {+1,— 1] Xo1 KXo Xo3
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Example of a constraint satisfaction problem
Magic Square with Matrices

X1 Xip X3 #

XoXi = Xy Xy  Xyz
Yk — X.
1] lj
! X3 Xz Xy H

+1 +1 —1



Example of a constraint satisfaction problem
Magic Square with Matrices

X1 Xip X3 #

‘Row product |/
XXy = Xy KXy Xp3 H —
X* = X.
i U
: X3 Xzp X3z H

+1 +1 —1



Example of a constraint satisfaction problem
Magic Square with Matrices

Xy Xpp X3 H
'Row product -+ /

 Column product — /

X* = X..
] lj
! X3 X3p X33 +I _

+1 +1 —1

XX = Xy1 KXy Xp3 Hl




Example of a constraint satisfaction problem

Matrix solution

I®X XQI XX +I1

Q1 IQ7Z 7ZQ7Z +I1

/Q®QX X®Z YRY +]

+1 +1 —1



Optimizing CSPs



Max-Cut

e Find a partition of vertices such that a maximum number of edges
are crossing the partition
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Max-Cut

Find a partition of vertices such that a maximum number of edges
are crossing the partition

Variables: x, ...,x, € {—1,+ 1}
Constraints: x; # x; for every edge

Goal: Maximize number of constraints satisfied

” ~

_l ,l \A‘ 1 — X:X;
! | .« s A1
’ ' maximaize: '
\ / \\ Z 2
\\ I\‘ \ (I’])EE
/ 2 subject to: x; € {—1,+1}.

@ ~_ " _+_l

(a) Example of a cut (b) Max-Cut as a polynomial optimization



Max-Cut

1— x,-x]-
2

maximize: Z
(i,j)€E

subject to: x; € {—1,+1}.



Max-Cut

1— x,-x]-
2

maximize: Z
(i,j)€E

subject to: x; € {—1,+1}.

Noncommutative Max-Cut

1 (Xi, X))
2

maximize: Z
(i,j)€E

subject to: X unitary with eigenvalues =+ 1.



Transition in Complexity (Max-Cut)

NP?

0.878

P

() e
(a) Max-Cut



Transition in Complexity (Max-Cut)

Lt NP2 1
0.878
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(a) Max-Cut (b) Noncommutative Max-Cut



Max-3-Cut

o (2 2 —xjxj— x;‘x,-
Y.L maximize: 3

(i,j)€E

subject to:  x; € {1, w, w?},

(a) Example of a partition of vertices into three subsets (b) Max-3-Cut as a polynomial optimization

Noncommutative Max-3-Cut

2 —(X;, X;) — (Xj, Xi)
3

maximize: Z
(i,j)€E

subject to: X unitary with eigenvalues 1, w, w?.



Transition in Complexity (Max-3-Cut)

NP?

0.836
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(a) Max-3-Cut

0.864
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(b) Noncommutative Max-3-Cut



Transition in Complexity (3-XOR)

1 e 1 e
NP RE
0.5 e 0.5 ¢
P P
0 e O e

(a) 3-XOR (b) Noncommutative 3-XOR



Summary



e Free Probability => Algorithmic Results for NC-CSPs

e Many open problems: Max-4-Cut, Unique-Games, Grothendieck
Inequalities, ...

e Hardness: Noncommutative PCP, Noncommutative UGC, ...



