Free Probability and Noncommutative Optimization

Maximize $\langle \phi | A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 | \phi \rangle$

Max-Cut

Hamoon Mousavi (Simons Institute at UC Berkeley)

Eric Culf (University of Waterloo), Taro Spirig (University of Copenhagen)

We talk about

- Noncommutative Constraint Satisfaction Problems
- Distribution of eigenvalues of pairs of random unitaries
- Free probability for understanding this distribution on eigenvalues

Relative Distribution

Relative Phase

between eigenvalues of random unitaries

Random eigenvalues of pair of unitaries

- Sample a Haar random unitary *X*
- Sample an eigenvalue α

- Sample a Haar random unitary *X*
- Sample an eigenvalue α

The random eigenvalue on the unit circle

- Sample a Haar random unitary *X*
- Sample an eigenvalue α

- Sample a Haar random unitary *X*
- Sample an eigenvalue α
 - Let P_{α} be the projection onto α -eigenspace
 - Sample α with probability $\operatorname{tr}(P_{\alpha})$

• Sample Haar random unitaries X and Y

- Sample Haar random unitaries X and Y
- Sample an eigenvalue α of X and β of Y

- Sample Haar random unitaries X and Y
- Sample an eigenvalue α of X and β of Y
 - With probability $\operatorname{tr}(P_{\alpha}Q_{\beta}) = \langle P_{\alpha}, Q_{\beta} \rangle$
 - P_{α} projection onto α -eigenspace of X
 - Q_{β} projection onto β -eigenspace of Y

- Sample Haar random unitaries *X* and *Y*
- Sample eigenvalue (α, β) of X and Y

- Sample Haar random unitaries *X* and *Y*
- Sample eigenvalue (α, β) of X and Y
- We are interested in the random variable

$$\theta = \angle \alpha * \beta = \angle \beta - \angle \alpha$$

- Sample Haar random unitaries X and Y
- Sample eigenvalue (α, β) of X and Y
- We are interested in the random variable

$$\theta = \angle \alpha * \beta = \angle \beta - \angle \alpha$$

The random eigenvalue of pairs of unitaries

Relative Distribution

Given a distribution on pairs of unitaries (X, Y) we can study the "distribution of the relative phase θ "

Fixed inner product distribution on pairs of unitaries

• We want *X* and *Y* to have a fixed inner product

Fixed inner product distribution on pairs of unitaries

- We want *X* and *Y* to have a fixed inner product
- Given fixed unitaries A and B consider the following distribution on (X, Y)
 - Sample a Haar random unitary U
 - Let X = UA and Y = UB

Fixed inner product distribution on pairs of unitaries

- We want *X* and *Y* to have a fixed inner product
- Given fixed unitaries A and B consider the following distribution on (X, Y)
 - Sample a Haar random unitary U
 - Let X = UA and Y = UB
- Clearly < X, Y > = < A, B >

Relative Distribution of A and B

- Sample a Haar random unitary U
- Let X = UA and Y = UB
- Sample an eigenvalue α of X and β of Y
 - With probability $tr(P_{\alpha}Q_{\beta})$
- Return $\theta = \angle \alpha^* \beta$

- Sample a Haar random unitary U
- Let X = UA and Y = UB
- Sample an eigenvalue α of X and β of Y
 - With probability $tr(P_{\alpha}Q_{\beta})$
- Return $\theta = \angle \alpha^* \beta$

- ullet Sample a Haar random unitary U
- Let X = UA and Y = UB
- Sample an eigenvalue α of X and β of Y
 - With probability $tr(P_{\alpha}Q_{\beta})$
- Return $\theta = \angle \alpha^* \beta$

• Suppose $\langle A, B \rangle = -1$ then B = -A

- Sample a Haar random unitary U
- Let X = UA and Y = UB
- Sample an eigenvalue α of X and β of Y
 - With probability $tr(P_{\alpha}Q_{\beta})$
- Return $\theta = \angle \alpha^* \beta$
- Suppose $\langle A, B \rangle = -1$ then B = -A
- Then for any sample (X,Y) we also have Y=-X

- Sample a Haar random unitary U
- Let X = UA and Y = UB
- Sample an eigenvalue α of X and β of Y
 - With probability $\operatorname{tr}(P_{\alpha}Q_{\beta})$
- Return $\theta = \angle \alpha^* \beta$
- Suppose $\langle A, B \rangle = -1$ then B = -A
- Then for any sample (X,Y) we also have Y=-X
 - so if (α, β) is a sample from our distribution of eigenvalues

with probability one we have $\beta = -\alpha$

PDF of the relative distribution is the Dirac delta at π

Typical behaviour (informal)

• Let $\lambda = \langle A, B \rangle$ and let θ be the relative phase r.v.

Typical behaviour (informal)

- Let $\lambda = \langle A, B \rangle$ and let θ be the relative phase r.v.
- Then $\mathbb{E}e^{i\theta} = \lambda$

Typical behaviour (informal)

- Let $\lambda = \langle A, B \rangle$ and let θ be the relative phase r.v.
- Then $\mathbb{E}e^{i\theta} = \lambda$
- So we expect θ to be somewhere around $\angle \lambda$

• In our example $\lambda = -1$ and $\angle \lambda = \pi$

PDF of the relative distribution is the Dirac delta at π

Cauchy Law (this paper)

Relative distribution of A and B is a wrapped Cauchy distribution with parameters that only depends on

$$\langle A, B \rangle$$

Cauchy Law (this paper)

Relative distribution of \boldsymbol{A} and \boldsymbol{B} is a wrapped Cauchy distribution with parameters that only depends on

$$\langle A, B \rangle$$

• This holds only as dim $\rightarrow \infty$

Cauchy Law (this paper)

Relative distribution of \boldsymbol{A} and \boldsymbol{B} is a wrapped Cauchy distribution with parameters that only depends on

$$\langle A, B \rangle$$

- This holds only as dim $\rightarrow \infty$
- If $\lambda = \langle A, B \rangle$ then
 - The peak position is at $\angle \lambda$
 - The scale factor is $ln(1/|\lambda|)$

PDF of relative distribution of A and B for various values of $\lambda = \langle A, B \rangle$

Proof Idea

• Let $\Delta_{A,B}: \mathcal{B}([0,2\pi)) \to \mathbb{R}_{\geq 0}$ denote the distribution function of the relative distribution of A and B

Proof Idea

• Let $\Delta_{A,B}: \mathcal{B}([0,2\pi)) \to \mathbb{R}_{\geq 0}$ denote the distribution function of the relative distribution of A and B

• Then $\Delta_{A,B}(E) = \mathbb{E}_U(w_{UA,UB}(E))$

• Here $w_{UA,UB}(E)$ is the sum of $tr(P_{\alpha}Q_{\beta})$ whenever $\angle \alpha^*\beta \in E$

Proof Idea part 1: convergence in distribution

• If we let

$$\lambda = \langle A, B \rangle$$

our goal is to show that the $\Delta_{A,B}$ converges to the wrapped Cauchy distribution with parameter λ

Proof Idea part 1: convergence in distribution

• If we let

$$\lambda = \langle A, B \rangle$$

our goal is to show that the $\Delta_{A,B}$ converges to the wrapped Cauchy distribution with parameter λ

• We just need to show that the characteristic function of $\Delta_{A,B}$

$$\chi_{\Delta_{A,B}}(n) \to \lambda^n$$

Proof Idea part 2: characteristic function

• The characteristic function of relative distribution $\Delta_{A,B}$ is

$$\chi_{\Delta_{A,B}}(n) = \int tr[U^{-n}(UD)^n]dU$$

where D is A*B

Proof Idea part 2: characteristic function

• The characteristic function of relative distribution $\Delta_{A,B}$ is

$$\chi_{\Delta_{A,B}}(n) = \int tr[U^{-n}(UD)^n]dU$$

where D is A*B

ullet In fact we can assume D is diagonal

Proof Idea part 3: free independence

• Goal
$$\int tr[U^{-n}(UD)^n]dU \rightarrow tr(D)^n$$

Proof Idea part 3: free independence

• Goal
$$\int tr[U^{-n}(UD)^n]dU \rightarrow tr(D)^n$$

• For n = 1,2, it is easy to show that the integral is exactly $tr(D)^n$

Proof Idea part 3: free independence

• Goal
$$\int tr[U^{-n}(UD)^n]dU \rightarrow tr(D)^n$$

• For n = 1,2, it is easy to show that the integral is exactly $tr(D)^n$

• As dimension grows, we have $U, D \rightarrow u, d$ in *-distribution where u and d are free

Proof Idea part 3: free independence

• So
$$\int tr[U^{-n}(UD)^n]dU \rightarrow \tau(u^{-n}(ud)^n)$$

and the right hand side is just $\tau(d)^n$

which is $tr(D)^n$

Application to Optimization Optimization

Discrete optimization (Example)

$$\max \sum w_{ij} x_i x_j$$

s.t.
$$x_i^2 = 1$$

Discrete optimization (Example)

$$\max \sum w_{ij} x_i x_j$$

s.t.
$$x_i^2 = 1$$

• Relax to $x_i \in [-1,1]$ and solve

• Round to nearest discrete point $\{-1,1\}$

• Imagine optimizing over unitaries with discrete set of eigenvalues

$$A*A = 1$$
 and $A^2 = 1$

• Imagine optimizing over unitaries with discrete set of eigenvalues

$$A*A = 1$$
 and $A^3 = 1$

• We can again relax then round

• We can again relax then round

• We can again relax then round

• \tilde{A} is the nearest discrete unitary (of order-3) to A

$$\max \sum w_{ij} < A_i, A_j >$$

$$\max \sum w_{ij} < A_i, A_j >$$

• Suppose we are given a solution $A_1, ..., A_n$ to the relaxation

$$\max \sum w_{ij} < A_i, A_j >$$

- Suppose we are given a solution $A_1, ..., A_n$ to the relaxation
- ullet Premultiplying by a Haar unitary U does not change the value

$$UA_1, ..., UA_n$$

$$\max \sum w_{ij} < A_i, A_j >$$

- Suppose we are given a solution $A_1, ..., A_n$ to the relaxation
- \bullet Premultiplying by a Haar unitary U does not change the value

$$UA_1, ..., UA_n$$

• How good is the following solution in expectation?

$$U\tilde{A}_1, ..., U\tilde{A}_n$$

• We want to compare

$$\sum w_{ij} < A_i, A_j >$$

and

$$\mathbb{E}_{U} \sum w_{ij} < \tilde{UA}_{i}, \tilde{UA}_{j} >$$

• We want to compare

$$\lambda = \langle A, B \rangle$$

and

$$\mathbb{E}_{U} < \tilde{UA}, \tilde{UB} >$$

• We want to compare

$$\lambda = \langle A, B \rangle$$

and

$$\mathbb{E}_{U} < \tilde{UA}, \tilde{UB} > = \int \mathrm{fid}(\theta) d\Delta_{A,B}(\theta)$$

What does fidelity look like?

Theorem

$$\mathbb{E}_{U}(1 - \langle \tilde{UA}, \tilde{UB} \rangle) \ge 0.864(1 - \langle A, B \rangle)$$

Application of Cauchy Law to Optimization

If there is a unitary solution, we know there exists a nearby discrete unitary solution

Application of Cauchy Law to Optimization

If there is a unitary solution, we know there exists a nearby discrete unitary solution

You can often find a unitary solution by solving an SDP

• In fact we can calculate

$$\mathbb{E}_{U}\operatorname{tr}(P(\tilde{U}A, \tilde{U}B)) = \int \operatorname{fid}_{P}(\theta) d\Delta_{A,B}(\theta)$$

where fid_P is independent of A and B!

Noncommutative Constraint Satisfaction Problems

Magic Square

$$x_{ij} \in \{+1, -1\}$$

x_{11}	x_{12}	x_{13}
x_{21}	x_{22}	x_{23}
x_{31}	x_{32}	x_{33}

Magic Square

$$x_{ij} \in \{+1, -1\}$$

x_{11}	x_{12}	x_{13}	+1
x_{21}	x_{22}	x_{23}	+1
x_{31}	x_{32}	x_{33}	+1
+1	+1	-1	

Magic Square

$$x_{ij} \in \{+1, -1\}$$

x_{11}	x_{12}	x_{13}	+1
x_{21}	x_{22}	x_{23}	+1
x_{31}	x_{32}	x_{33}	+1
+1	+1	-1	

Row product +1

Column product -1

Magic Square

$$x_{ij} \in \{+1, -1\}$$

	+1	x_{13}	x_{12}	x_{11}
Row product + 1 Column product - 1	+1	x_{23}	x_{22}	x_{21}
A contradiction	+1	x_{33}	x_{32}	x_{31}
		-1	+1	+1

Magic Square with Matrices

$$X_{ij}^*X_{ij} = I$$

$$X_{ij}^* = X_{ij}$$

X_{11}	X_{12}	X_{13}	+I
X_{21}	X_{22}	X_{23}	+I
X_{31}	X_{32}	X_{33}	+I
+I	+I	-I	

Magic Square with Matrices

$$X_{ij}^*X_{ij}=I$$

$$X_{ij}^* = X_{ij}$$

X_{11}	X_{12}	X_{13}	+I	
X_{21}	X_{22}	X_{23}	+I	Row product Column product
X_{31}	X_{32}	X_{33}	+I	
+I	+I	-I		

Magic Square with Matrices

$$X_{ij}^*X_{ij} = I$$

$$X_{ij}^* = X_{ij}$$

	+I	X_{13}	X_{12}	X_{11}
Row product Column product	+I	X_{23}	X_{22}	X_{21}
No longer a contradiction	+I	X_{33}	X_{32}	X_{31}
		-I	+I	+I

Matrix solution

$I \otimes X$	$X \otimes I$	$X \otimes X$	+I
$Z \otimes I$	$I \otimes Z$	$Z \otimes Z$	+I
$Z \otimes X$	$X \otimes Z$	$Y \otimes Y$	+I
+I	+I	-I	

Optimizing CSPs

• Find a partition of vertices such that a maximum number of edges are crossing the partition

- Find a partition of vertices such that a maximum number of edges are crossing the partition
- Variables: $x_1, ..., x_n \in \{-1, +1\}$
- Constraints: $x_i \neq x_j$ for every edge
- Goal: Maximize number of constraints satisfied

- Find a partition of vertices such that a maximum number of edges are crossing the partition
- Variables: $x_1, ..., x_n \in \{-1, +1\}$
- Constraints: $x_i \neq x_j$ for every edge
- Goal: Maximize number of constraints satisfied

(a) Example of a cut

maximize:
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

subject to:
$$x_i \in \{-1, +1\}$$
.

(b) Max-Cut as a polynomial optimization

maximize:
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

subject to:
$$x_i \in \{-1, +1\}$$
.

maximize:
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

subject to:
$$x_i \in \{-1, +1\}.$$

Noncommutative Max-Cut

maximize:
$$\sum_{(i,j)\in E} \frac{1-\langle X_i, X_j \rangle}{2}$$

subject to: X_i unitary with eigenvalues ± 1 .

Transition in Complexity (Max-Cut)

Transition in Complexity (Max-Cut)

(a) Max-Cut

(b) Noncommutative Max-Cut

Max-3-Cut

(a) Example of a partition of vertices into three subsets

maximize:
$$\sum_{(i,j)\in E} \frac{2-x_i^*x_j-x_j^*x_i}{3}$$

subject to: $x_i \in \{1, \omega, \omega^2\}$,

(b) Max-3-Cut as a polynomial optimization

Noncommutative Max-3-Cut

maximize:
$$\sum_{(i,j)\in E} \frac{2 - \langle X_i, X_j \rangle - \langle X_j, X_i \rangle}{3}$$

subject to: X_i unitary with eigenvalues $1, \omega, \omega^2$.

Transition in Complexity (Max-3-Cut)

(a) Max-3-Cut

(b) Noncommutative Max-3-Cut

Transition in Complexity (3-XOR)

(b) Noncommutative 3-XOR

Summary

• Free Probability => Algorithmic Results for NC-CSPs

• Many open problems: Max-4-Cut, Unique-Games, Grothendieck Inequalities, ...

• Hardness: Noncommutative PCP, Noncommutative UGC, ...